

 “X-DATABASES” – THE INTEGRATION OF XML INTO
ENTERPRISE DATABASE MANAGEMENT SYSTEMS

by Leah Davis

A Master's paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill

in partial fulfillment of the requirements
for the degree of Master of Science in

Information Science.

Chapel Hill, North Carolina

October, 2000

Approved by:

Gregory B. Newby
Advisor

2

ABSTRACT

Leah Davis. “X-Databases” – The Integration of XML into Enterprise Database
Management Systems. A Master's paper for the M.S. in I.S. degree. October, 2000. 65
pages. Advisor: Gregory B. Newby.

An examination of how the eXtensible Markup Language (XML) and database

management systems (DBMS) fit together, and current approaches to providing

database technologies that support XML. Analysis of how XML is being deployed in four

classes of XML Database (X-Database) applications provides a basis for understanding

the direction of X-Database technology and associated standards.

In a simple implementation, an XML Document Type Definition (DTD) is mapped to

relational structures, and XML data are stored in a DBMS (Oracle8i). Sample queries

are presented to retrieve XML from the database. A middleware tool (XSQL Java

Servlet) is used to transform query results into records on a Web page. The results

demonstrate that relational databases require data to be rigidly mapped to relational

structures.

The paper concludes by exploring future challenges to integrating XML and DTDs with

X-Databases, which establishes the need for a more “native” integration approach.

Headings:

XML (Document Markup Language) - Database Management Systems (DBMS)

Relational Database – Oracle8i, XSQL, XSU

XML – XML Databases, Document Type Definitions (DTDs), Schemas, XQL

3

TABLE OF CONTENTS

What IS XML?.. 5

Principles & key concepts behind XML.. 8
XML documents and information structures .. 9
XML APIs (tree-based API processing with DOM) ..10
Presenting XML using XSL style sheets ...12
Schemes and DTDs ...13

How is XML being Used? ...14
Uses of XML in Internet applications ...14
Uses of XML in Database Applications..19

Integration of Data Types ..19
Exchange of XML Data/Documents...22

XML Databases ...26
What is an XML Database? ..26
XML Database Solutions ...26

Deployment of XML databases ..26
(1) Databases with relational database kernel + XML layer (XML → Middleware
→ Database)..28
Issues: ...31
(2) Native XML Databases (XML → Database → XML)33
Issues: ...36
(3) XML Middleware Components (XML → Database → Middleware → XML)37
(4) Content Management Systems (XML → Content / Documents → XML)........42
Issues ..43

Implementation – Retrieving & Storing XML in Oracle8i..44
Oracle8i - Installation and Process Overview ..44
Database Design ...47

Step 1 - Designing Database Schema ...47
Step 2 - Mapping XML document structure to database schema47

Database to XML: Retrieving XML...48
Step 3 - Retrieve XML from Database using a Web Form48
Issues ..53

Conclusions & Future Challenges..55
NOTES ..58
REFERENCES ..62

4

INTRODUCTION

One of the most decisive issues in information technology (IT) today is the question of

how to integrate the new metalanguage XML (eXtensible Markup Language) with

typical database management tasks like the retrieval, storage, and querying of data.

Some predict that XML will dramatically change the way enterprises work with data,

driving a new generation of database and data integration solutions (X-Databases).

The question to be addressed is: What are current approaches to integrating XML in

enterprise Database Management Systems (DBMS), and what products, standards, and

integration issues are shaping the future direction of X-Database technology? The term

enterprise refers to larger organizations that use DBMS technology, including inter alia

corporations, government bodies, and non-profit institutions.

The paper opens with an overview of the concept of XML, its information structures,

optional XML modules, and how XML is parsed and presented. This provides a

background for understanding how XML is being used in both Internet and Database

applications, and how XML and emerging “standards” are changing traditional

approaches to data integration and exchange.

The review of how XML is being used in databases leads to a closer look of four classes

of X-Database products deployed in enterprises today. Some products store and

retrieve data directly as XML; others require some middle layer that performs a

conversion or transformation to XML. Some technical possibilities and issues in using

these X-Database products are discussed.

A simple implementation of XML in an Oracle8i database demonstrates how XML and a

relational database can be integrated. An XML data transfer layer (middleware) is used

to query the database and to present the results as XML-based information on a World

Wide Web (Web) page.

Lastly, the paper explores future challenges to integrating XML with databases. It

concludes with an analysis of the likely direction of X-Database technology, suggesting

that there is a need to build more “native” X-Databases that are shaped by the

essential characteristics of XML itself: the ability to be freely extensible.

5

WHAT IS XML?

Before one can start thinking about XML and databases, it is important to understand

the concept of XML. This section provides an overview of XML, its principles and key

concepts, and how XML documents are structured.

XML is a specification defined by the World Wide Web Consortium (W3C) that provides

a set of grammar and syntax rules, guidelines and conventions for semantically

describing the structure of data (W3C, 1998a). XML lets document authors define their

own markup tags and attribute names to assign meaning to the data elements in a

document. Further, hierarchical combinations of XML elements can be nested to relay

information about data relationships.

The W3C formally ratified XML as an open Web standard in February 1998. An open

standard means that the standard is not owned or controlled by one company. Since

1998, XML has become a widely used specification for defining networked data across a

number of application domains (Henry, 1999).

XML is a subset or restricted form of the Standard Generalized Markup Language (ISO

8879) (SGML) (W3C, 1998a). SGML is an international standard metalanguage for text

markup systems that allows documents to be self-describing through the specification

of custom tag sets.

The Hypertext Markup Language (RFC 1866) (HTML) is also a subset of SGML; but it is

not extensible like XML. HTML markup is limited to a predefined vocabulary of tags that

describe how to present the data — for example, with headings, paragraphs, lists,

images, etc. (and some provision for hypertext and multimedia.) One can control

whether HTML document content is bold, italic, and indented. One can also exercise

some basic control over structure, e.g. headings, paragraphs, and lists. However, it is

not possible to assign semantics or to describe specific data in an HTML document

(Simpson, 1999).

XML markup is not limited to defining formatting and visual presentation, as in HTML

documents. Rather, XML markup provides descriptions of the data (metadata), allowing

software to understand the meaning of the data automatically. Metadata is a definition

or description of data (whereas metalanguage is a definition or description of

6

language) [1]. It is this ability to encode or “markup” text documents with tags that

describe the data and a structure that the author defines that makes XML extensible.

Consider the following Example 1, which is an HTML document that represents the

document structure of an employee record. A corresponding XML example follows in

Example 2.

Example 1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
 <head>
 <title>Employee List</title>
 </head>
 <body>
<table>
<tr><td>7788</td><td>JOHN</td><td>SCOTT</td><td>ANALYST</td><td>756
6</td><td>4/19/1987</td><td>3000</td><td>20</td></tr>
 </table>
 </body>
</html>

This example shows that HTML may reflect the document structure, but it cannot

adequately represent the structure of data.

XML gets around this problem by allowing users to invent custom markup tags for

identifying specific information within documents. The angle brackets <> and text

inside are called tags, and each set of tags and its enclosed data are called an element.

Consider Example 2, an example of an XML document describing an employee record.

Note the addition of XML data tags and the nested structure.

Example 2

<?xml version="1.0" encoding="UTF-8"?>
<EMP>
 <EMPNO>7654</EMPNO>
 <ENAME>
 <FNAME>JOHN</FNAME>
 <LNAME>SCOTT</LNAME>
 </ENAME>
 <JOB>SALESMAN</JOB>
 <MGR>7566</MGR>
 <HIREDATE>4/19/1987</HIREDATE>
 <SAL>1250</SAL>
 <DEPTNO>20</DEPTNO>
</EMP>

7

This example clearly conveys a relationship between various data objects. Further,

each conceptual piece of data is represented by its own XML element, such as

<ENAME> and <SAL>. XML does not require tags or attributes to be pre-declared, and

XML places no limits on how a user nests different elements.

A Document Type Definition (DTD) further extends the ability of users to describe the

structure and nature of an XML docume nt. A DTD is a file (or several files used

together), written in XML's declaration syntax, that defines the document type and

structural rules for a document’s tags or attributes (St. Laurent, 1999a). A DTD may be

internal — contained within the XML docume nt — or external — in a separate file or

Universal Resource Indicator (URI).

Metadata is published in a DTD file for reference by other systems. It is analogous to

the Database Definition Language (DDL) file that is used to define the structure of a

database, but with a different syntax (Finkelstein, 1999).

Unlike HTML, which has a DTD fixed by the W3C, XML enables authors to describe a

DTD that is specifically tailored for different functions, providing the ability to:

• Describe a consistent “grammar” or structure for the type of document to be

displayed, so that all documents that belong to a particular type will be constructed

and named in a consistent manner. For example, in DTDs for specific industries or

fields of knowledge, basic requirements can be forced on the structure of the

documents (e.g. sequence, existence of particular elements) that are automatically

verifiable via an XML parser. As requirements change, new tags can be added to

the DTD to reflect new data types or to extend existing ones.

• Assign a context, meaning, and dependencies to a subset of tags. Without a DTD,

one can use virtually any tag in an XML document (provided it complies with the

XML syntax rules for well-formedness described below).

This flexibility to specify a DTD is really what differentiates XML from HTML. XML is

extensible because a user gets to specify the DTD; HTML is not extensible because the

DTD is fixed, at least for a particular HTML version like 3.2 or 4.0. For example, the

HTML 4.01 specification includes a DTD with syntactic constraints for style sheets,

scripting, embedding objects, etc. that cannot be modified.

8

SGML also provides the ability to specify a DTD; however, SGML is much more complex

and rigid than XML. For example, SGML has more elaborate white space handling rules

than XML, and SGML documents require that a DTD be present, whereas XML does not

require a DTD.

An XML document may define its own markup informally by the simple existence and

location of elements in an XML document (a DTDless XML document). XML omits the

more complex and less-used parts of SGML in return for the benefits of self-

description, extensibility, structure, and validation (Harold, 1999).

XML has been specifically designed for ease of implementation and for interoperability

with both SGML and HTML (W3C, 1998). This makes XML a standard that can be used

universally ("create once, read anywhere"). Any Internet object can be specified and

integrated using XML.

Principles & key concepts behind XML

Physically, XML documents are made up of storage units called entities, which contain

either parsed data or unparsed data (W3C, 1998a). Parsed data are made up of

characters, some of which form character data and some markup.

Markup encodes a description of the document’s storage layout and logical structure

with tags (elements), entity references, comments, processing instructions, document

type declarations, XML declarations, and CDATA section delimiters. The logical

structure of an XML document refers to the prolog and the body of the document.

The prolog consists of the XML declaration, that is, the version number; a possible

language encoding; other attributes (name=”value” pairs); and an optional DTD. The

prolog precedes the body of the document.

The body of the document contains the remainder of the XML document. The body

starts with a single “root” element (DOCROOT) declaration, for example <EMP> in

Example 2 above. This marks the beginning and end of the document and is considered

the parent of all other elements, attributes, CDATA, entity references, comments, text,

and processing instructions, which are nested within the root element’s start-tag and

end-tag.

9

There are optional modules that provide sets of tags and attributes for specific tasks.

For example, CSS, XSL, and XML schemas. Other optional modules are the XML Linking

Language (XLink), XML Pointer (XPointer) and XML namespaces.

XLink describes a standard way to add hyperlinks to an XML file [2]. XPointer is a

syntax for pointing to parts of an XML document [3]. Together, they describe

numerous ways to express complex but flexible linking relationships between XML

documents. Since this paper focuses on the core XML specification, a detailed

exploration of various proposed mechanisms for XLink and XPointer inter-document

references is not warranted.

XML Namespaces is a specification that describes how you can associate a URI with

every single tag and attribute in an XML document (W3C, 1999a). XML Namespaces

are intended to prevent potential conflicts between identically named XML elements by

associating a prefix that identifies an intended namespace with a URI.

XML documents and information structures

There are structural and notational rules that apply to all XML documents. XML

documents that conform to these rules are considered well formed, and may be read

and parsed by an XML application. The rules of well formedness are:

• All start-tags and end-tags must match up (omission is not allowed except for

empty elements);

• Empty elements either end with ‘/>’ or use the special XML syntax <empty/>;

• All the attribute values are quoted (e.g. <a href="http://www.w3.org/TR/REC-

xml">);

• All the entities are declared (entities are re-usable chunks of data, much like

macros, which is part of XML's inheritance from SGML);

• There must not be any isolated markup-start characters (< or &) in CDATA

(they must be given as < and &); and

• Elements must nest inside each other properly (no overlapping markup).

Well-formed XML documents that conform to a DTD are considered valid. A valid XML

document must refer to a DTD using a document type declaration that references the

10

DTD and its location [4]. As discussed earlier, a DTD is not required — an XML

document may be DTDless.

An XML document that references a DTD specifies what names can be used for

elements, attributes, and entities, where they may occur, and how they all fit together.

Consider Example 3, a DTD for the employee data described in Example 2.

Example 3

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT EMPLIST (EMP)*>
<!ELEMENT EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM?, DEPTNO)>
<!ELEMENT EMPNO (#PCDATA)>
<!ELEMENT ENAME (FNAME+, LNAME+, MNAME?)>
<!ELEMENT FNAME (#PCDATA)>
<!ELEMENT LNAME (#PCDATA)>
<!ELEMENT MNAME (#PCDATA)>
<!ELEMENT JOB (#PCDATA)>
<!ELEMENT MGR (#PCDATA)>
<!ELEMENT HIREDATE (#PCDATA)>
<!ELEMENT SAL (#PCDATA)>
<!ELEMENT COMM (#PCDATA)>
<!ELEMENT DEPTNO (#PCDATA)>
<!--===-->
<!ENTITY XML "Extensible Markup Language">
<!ENTITY AUTHOR "Leah Davis - UNC-CH SILS">

The goal of this DTD is to provide structural rules that describe an employee record. If

the XML document in Example 2 referenced the above DTD (for example, by including

a declaration <!DOCTYPE EMPLIST SYSTEM "emp.dtd">, Example 2 would be a valid

XML document.

XML APIs (tree-based API processing with DOM)

Once a DTD exists, a parser is used to read through the XML document (the input

stream), check for conformity to the document type defined, and extract the data

(content) from the tags.

A parser is a program that takes data and puts it in a format or language that the

application can understand. A well-formed XML document is parsed to display the

document (in a browser) or to read the data in the document (from a database).

11

Oracle8i is a DBMS that includes XML validating parsers for Java (versions 1.1 and 2),

C, C++, and PL/SQL.

When the XML processor parses an input stream, it maps the result to the Document

Object Model (DOM) — a tree-based hierarchical object — for further manipulation by

the application. XML documents can be modified directly at the DOM level.

DOM is a standard set of function calls for manipulating XML from a programming

language (W3C, 1998b). The DOM provides an abstract Application Programming

Interface (API) for constructing, accessing, and manipulating XML (and HTML)

documents. DOM defines specialized interfaces for documents, elements, text,

attributes, entities, and other abstractions (Birbek, 2000).

DOM appears to be the most widely accepted API (Ogbuji, 1999). Oracle, Microsoft and

other vendors have bound DOM to their proprietary programming languages to provide

APIs with the ability to query and manipulate XML documents in memory. DOM Level 2

is the most recent version (W3C Candidate Recommendation as of May 2000).

Alternatively, other APIs can be used. Below is a list of alternatives — each has

appropriate uses in particular environments:

• SAX: The Simple API for XML: an event-based interface for XML parsers, which

differs from the tree-based DOM approach to parsing. SAX is a public domain API,

which is used as the basis for a number of Java APIs. Most XML parsers support the

May 1998 version of SAX, SAX1. Many, but not all, major parsers support the

current version, SAX2, released in May 2000.

• JAXP: Java API for XML Parsing: Sun's JAXP, the Java API for XML Parsing,

originally released in April 2000, provides a standard interface to XML for Java

applications. It does not require use of Sun's Java Project X parser, although this is

the default.

• Java Project X: Java Project X provides full XML processing capabilities, including an

XML parser with optional validation, an in-memory object model tree that supports

the W3C DOM Level 1 recommendation, and basic support for JavaBeans

integration with XML.

12

• SAXON: The SAXON package is a collection of tools for processing XML documents.

SAXON includes an XSLT processor (which implements the Version 1.0 XSLT and

XPath Recommendations) and a Java library.

• Namespace APIs: Namespace interfaces give information relating to the XML

document namespaces identified by URI references that qualify element and

attribute names and location resources on different machines or in different XML

documents (Chang, 2000). Essentially, namespace APIs allow identical names for

elements and attributes to be qualified with URIs to differentiate the names.

Oracle8i’s XML parsers support DOM, SAX, and Namespace APIs (Ramalho, 2000).

Presenting XML using XSL style sheets

After the system has parsed the XML input into the DOM object nodes (hierarchical,

parent/child node relationships), an application (or multiple applications) can access

the objects for further processing or presentation (Robie, 1998). Further processing

might include rendering the XML data for a variety of media and application targets,

such as a Web page, e-mail, pager display, cell phone, or formatting for input and

integration with a database or an enterprise resource planning (ERP) system.

For content rendered in a Web browser, CSS, the Cascading Stylesheet Specification

(CSS), can be used to assign styles to elements. XML separates structure and content

from presentation — the XML data defines the structure and content, and a stylesheet

defines the presentation. A stylesheet means a document that specifies how to process

and format the elements of another document.

However, only the Extensible Stylesheet Language (XSL) specification has the ability to

parse once and transform, organize and render XML content to many different media

and application targets by applying stylesheets (W3C, 2000a). For example, with a

DBMS is possible to transfer data from the database into a format specified by a device

or user without having to modify the underlying database code. This is an important

capability for allowing different databases and applications to share data.

Physically, an XSL stylesheet is an XML file that uses XML syntax and that combines

formatting features from CSS.

13

An adjunct to XSL is the Extensible Stylesheet Language Transformation (XSLT), a

transformation language for rearranging, adding or deleting tags and attributes. XSL is

based on XSLT. XSLT transforms XML documents into other types of XML documents.

An XSLT processor is built in to the Oracle8i XML processor to use in conjunction with

XSL style sheets for rendering an XML stream into different formats for different

targets (Chang, 2000). For example, Oracle’s XSLT processor correlates patterns in an

XSL stylesheet and then applies commands (e.g. HTML tags to surround data found) to

output the results as a new XML document.

Schemes and DTDs

XML has no data types — it is just text. Because DTDs are designed for use with text,

they have no mechanism for defining the content of elements in terms of data types

(typed attributes). Thus, a DTD can only be used to specify markup rules — it cannot

be used to specify numeric ranges or to define limitations or checks on the text

content.

Schemas provide a better means of specifying typed attributes. They provide criteria

for validating the content of elements and markup. Schemas also provide more precise

descriptions of valid structures and types of data than is achievable with DTD.

To force an XML file to adopt a schema instead of a DTD, one needs to add an “xmlns

attribute” to the root element. For Example 2, the syntax may read:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsd:schema PUBLIC "-//W3C//DTD XMLSCHEMA 19991216//EN" ""
[
 <!ENTITY % p 'xsd:'>
 <!ENTITY % s ':xsd'>
]>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <xsd:element name="EMPLIST ">

There are a number of schema proposals under development. The W3C has a Working

Group for a schema language named XML-Schema. The goal of XML-Schema is to

define a more global and robust way of structuring and formatting the content and

semantics of XML documents (W3C, 2000b). Microsoft has developed its own

proprietary schema named BizTalk, which is specifically oriented toward data and

14

business process integration. At this point it is difficult to determine which proposal will

become widely ratified.

In this section, the structural and notational rules of XML were explained, and XML was

distinguished from HTML and SGML. This provides a background for the next section,

which describes how XML is being used in Internet and database applications to

identify and describe data and typed attributes. The next section also takes a closer

look at the proposals and standards being developed to define approaches to

integrating and exchanging XML-based information.

HOW IS XML BEING USED?

There are many potential uses of XML. This section captures the current state of how

XML is being used in Internet and database applications.

Uses of XML in Internet applications

It appears that XML is being used in the five major types of Internet applications:

1. Electronic commerce: To define, process, and manage cross-platform data formats

for Internet-based Business-to-Business (B2B) and Business-to-Consumer (B2C)

data interchange. The expectation seems to be that XML will enable developers to

build more portable, scalable, and interoperable distributed Web applications that

leverage open Internet standards (Oracle, 1999).

2. Internet content management and delivery: To provide native support for storage,

retrieval, and querying of XML content, enabling database-driven Web sites to

serve up more relevant search results and user-driven content.

3. Messaging and applications integration: To integrate business processes and

systems in a transparent manner. For example, integration with back-end ERP and

Customer Resource Management (CRM) systems from multiple vendors, systems

from partners in the supply chain, and data warehouses [5].

4. Data warehousing: To enable automated exchange and transformation of enterprise

metadata between enterprise database repositories, and business intelligence

15

applications (Hackathron, 1999). For example, XML is being used in Data

Warehousing technologies for corporate portals, also called Enterprise Portals (EPs)

or Enterprise Information Portals (EIPs), to integrate both structured and

unstructured data throughout an enterprise [6].

5. Application development: To develop customized and extensible Web applications

that make it easy to build web-database driven Internet applications.

XML models complex, hierarchical data. It is simple. It allows the use of domain

specific tags (domain-specific vocabularies) that all browsers with XML parsers can

understand. It provides a scaleable open platform, making it easier to integrate the

process of gathering, processing and disseminating data on the Internet.

Enterprises increasingly see the value in this extensibility. XML gives enterprises an

opportunity to create a single, consolidated view of corporate data — for example, to

gain a more complete view of each customer in order to improve customer relations

and speed up responsiveness [7]. An enterprise’s ability to access and use its

knowledge resources in this way can directly affect its competitive advantage and

future prosperity.

XML is of particular importance to web-based electronic business (e-commerce), where

large amounts of information must be exchanged within and outside an enterprise in a

way that ensures high performance and transaction processing. As a result,

productivity tools, knowledge management tools and office suites are beginning to

support XML. For example, Microsoft Office 2000 uses XML to maintain the internal

formats and styles used by Word, Excel and PowerPoint when converted to HTML — so

that the same originating source products can later open those HTML documents again

without losing relevant formatting detail. XML development tools such as the XML

Developers Kit (XDK) are also being released so that XML applications can be

developed more easily.

For many years, a great deal of effort has gone into the definition and implementation

of Electronic Data Interchange (EDI) standards to address the problem of

intercommunication between dissimilar systems and databases. EDI has been widely

used to exchange documents between commercial partners to a transaction. It works

16

well, but it requires expensive proprietary software and it is complex. As a result, it is

cost-justifiable generally only for large corporations (Finkelstein, 1999).

There are now moves to enable EDI data to travel inside XML. EDI vendors have

become aware that XML is a more inexpensive and standardized way to do data

translation and transformation. Once an organization’s metadata is defined and

documented, all programs can use XML to communicate. Further, optional modules like

XSL style sheets provide a means to render the same data on different devices such as

palm pilots and WebTV. This capability allows companies to focus more on using XML

for business operations, without concern for the kind of output devices that will present

the data.

The other thing that makes XML important for use in Internet applications is that it

provides much better metadata about individual content elements created and stored

in an XML DTD. If one adds XML and a DTD together, there is a powerful ability to not

only create, but also to repurpose data. For example, XML provides the ability to build

Internet applications that publish output to the Internet and port data to another

application.

There are, however, some limitations to using XML in Internet applications. DTDs,

schemes, domain-specific vocabularies and XML industry standards are still developing

in selected industry areas. Over the last decade there has been a rush to build

networks and to develop de facto technical standards to exploit Web industries. For

example, Microsoft has developed its own proprietary schema for handling XML data

(the XML Reduced Data Schema). XML-based protocols have been promulgated, such

as the Information Content Exchange (ICE) protocol, which is designed to provide

automated methods of repurposing and syndicating data. Numerous proprietary APIs

have also been developed that are controlled by a particular company (for example,

Sun’s Java API for XML Parsing).

In this competitive environment, there is a concern that software, information, services

and products may be lost in the cycles of technological change. There is also a concern

that no one single organization should have control over the future of the Web.

Instead, XML standards and protocols should promote the Web's evolution and ensure

interoperability. Standards directly enhance compatibility and interoperability, reducing

costs for both vendors (development costs and implementation time) and users

17

(collective switching costs arising from implementation of new protocols, installation of

new software and retraining for new products).

No one entity is charged with developing standards for the Internet in general. Instead,

communities such as the Internet Engineering Task Force (IETF) and consortia such as

W3C are working cooperatively on developing standards for the smooth operation of

the Internet.

The IETF is a large open international community of network designers, operators,

vendors, and researchers. By contrast, the W3C is a consortium of organizations that

pay a membership fee to support its operation (membership is open to any

organization). W3C Member organizations include vendors of technology products and

services, content providers, corporate users, research laboratories, standards bodies,

and governments.

The W3C plays a central role in developing technical specifications, called

Recommendations, which promote interoperable, accessible, universal, and portable

communication standards on the Internet. These Recommendations are effectively

standards documents. While they are not enforceable on W3C members (or anyone

else), the Recommendations are widely supported in Internet industry products.

W3C has a formal structured process for assigning defined groups of experts to

develop Recommendations. A member organization submits a proposed technology or

other idea (Proposal) for consideration by W3C. A Note is issued to acknowledge the

submission of the Proposal — though the Note does not guarantee any further action

by W3C. If W3C decides to develop the Proposal, a W3C Working Group is established

to create and publish a Working Draft. A Working Group consists of representative

researchers and engineers working for W3C Member organizations. Requests for

comments are made on the Working Draft (with limited opportunities for non-Member

participation), and the Working Draft is revised and republished about every three

months. Some Working Drafts may be dropped as active work — there are no

guarantees. Final drafts of the Recommendations (Proposed Recommendations) are

finally put up for Members to cast ballots on their acceptance or revision. If a Proposed

Recommendation gets past the membership and the W3C Director (who has final say),

it becomes a W3C Recommendation.

18

In just over two years, the W3C has developed more than four (4) Recommendations

relating to XML, including the XML1.0 specification itself, XML Namespaces (W3C,

1999a), Associating Style Sheets with XML documents (W3C, 1999b), and XSLT for

XML transformations (W3C, 1999c).

W3C currently has a Working Draft named the Resource Description Framework (RDF),

which describes a language for using XML syntax for activities including sitemaps,

content ratings, stream channel definitions, search engine data collection (web

crawling), digital library collections, and distributed authoring (W3C, 2000c). RDF was

initiated by the W3C to build standards for XML applications so they can inter-operate

and communicate more easily using XML as an interchange syntax.

A number of W3C Proposals are also in the pipeline. Examples include:

• The eXtensible Query Language (XQL) (September 1998), a recent (and evolving)

W3C proposal for using XSL as a general-purpose query language for making

database-style queries on XML documents [8].

• A W3C Note entitled XML-Data (January 1998), which provides recommendations

on how to make XML “database-ready” especially for three-tier architectures and

hetergenous databases. XML-Data suggests syntax for schemes and a model for

extending XML elements by adding data types, presentation rules, inheritance, etc.

XML-Data will be described in more detail below [9].

• A W3C Note entitled Simple Object Access Protocol 1.1 (SOAP) (May 2000), which

proposes a common remote procedure call (RPC) mechanism for basic information

access across any operating system or object interface protocols [10]. Until

recently there hasn’t been a common RPC mechanism for any operating system,

language, or object interface (for example, Microsoft COM vs. enterprise Java bean

environment). SOAP may provide a bridge between Windows, Java, and scripting

environments like Python and Perl.

While W3C Recommendations are considered stable — at least until the next revision

— and thus safe to implement, the specifications continue to evolve. The XML 1.0

Recommendation itself is still maturing. The most recent version is Version 1.6 (July

2000). Vendors may be behind or ahead of the W3C in releasing tools that support

19

these specifications in their products and application interfaces. For example, not all

standard Web browsers currently support XML.

Clearly, XML has momentum in terms of its integration into Internet applications;

however, standardization has a way to go. At this point, XML is really just a collection

of emerging specifications and related vocabularies based on the XML syntax. With

rapidly changing standards and middleware vendors competing on functionality, it is a

tenous environment in which to develop or adopt X-Database products or any other

XML-supported Internet application. It will take some time before standards mature

and platforms converge to provide seamless interoperability and integration of data

processes.

Uses of XML in Database Applications

XML is providing a platform for databases to integrate different data types and to share

data sources, facilitating an unprecedented opportunity for large-scale data/document

integration and exchange.

Integration of Data Types

One of the main database applications enabled by XML is the integration of data types.

Data type refers to a set of data with values having predefined characteristics — for

example, integers, floating points numbers, characters, strings, and pointers.

XML documents fall into two broad categories of data types: data-centric and

document-centric . XML enables both data- and document-centric data types to be

easily integrated in relational and object-oriented databases [11], where this was

difficult before.

Most relational and object-oriented databases are built for storing structured (data-

centric) data that are optimally stored in database tables (Ju, 1997). Structured data

tends to exist primarily in databases and data files that are used by current and older

enterprise databases (legacy systems). Data-centric documents commonly use XML for

data transport and their physical structure is often unimportant (Bourret, 1999).

Content management systems have been primarily used for storing document-centric

or unstructured (document-centric) data, especially when documents had to be output

in a human readable format (Bourret, 1999). Document-centric documents are

20

characterized by irregular structure and mixed content, and their physical structure is

important.

Chart 1 characterizes the differences between data- and document-centric data types:

Chart 1 – Structured & Unstructured Data Types

Data

type

Structure Used for Granularity Examples

Data-
centric

Highly regular
structure which
is constructed
from known,
regular sets of
data

Storing,
querying,
analyzing, and
manipulating
data by different
kinds of
applications and
for machine
processing

Fine-grained —
smallest
independent unit
of data at the
level of a
PCDATA-only
element or an
attribute

Data transport
(e.g. sales
orders, customer
records and
scientific data)

Dynamic web
pages
constructed from
known, regular
sets of data

Document
-centric

Irregular
structure and
mixed content
(text and
multimedia).

The physical
structure of the
content is
important

Searching in
specialized ways
specific to media
types in order to
produce human-
readable
dynamic
documents

Entities and
metadata are
significant (as
well as the
structure of
sibling elements
and PCDATA) —
smallest
independent unit
of data at the
level of an
element

User manuals,
reports, email,
graphics,
images, audio,
video

While legacy databases optimally store data-centric content, Finkelstein (1999)

estimates that in most enterprises, structured data comprises only 10% of the data,

information and knowledge resources of the business. The other 90% exists as

unstructured data in textual documents, reports or email, or as graphics and images,

or in audio or video formats that are not easily stored in the data-centric architecture

of a database (Finkelstein, 1999). A key advantage of using XML as a data source is

that XML enables both structured and unstructured data sources to be integrated (even

in legacy systems), because it does not differentiate between data types. As discussed

earlier, data in an XML document is just text, even if it represents another data type

21

(such as a date). Therefore, XML can be used in both data- and document-centric

formats.

With structured documents, such as text or RTF files, XML can be used to describe data

elements within an XML document. With unstructured documents, such as graphics,

video and multimedia files, XML can be used to describe the file as a whole or its sub-

elements, so it can be used with other documents.

New versions of enterprise databases and corporate portals/EPs are beginning to use

XML to integrate both structured and unstructured data, for easy access to information

throughout the enterprise (Hackathorn, 1999). XML is being used in databases so that

both structured and unstructured data can be:

• Stored, queried, processed and retrieved more efficiently in large amounts

(including Internet content);

• Published in more “dynamic” customizable formats based on client and user-

specified parameters; and

• Distributed more easily between applications [12].

An example is Oracle8i, which has introduced content management-like “views” to

retrieve both data- and document-centric content from the database for sharing with

other applications (Ramalho, 2000). The underlying physical storage of the content is

hidden from the end-user, and the appropriate view of content specific to the task at

hand is delivered as an integrated XML document. These views effectively transform

the structure of one or more underlying tables into a more meaningful structure for the

demands of a specific application.

In summary, XML is blurring the distinction between structured and unstructured

content by providing the ability to mix traditional data elements with free text in XML,

and to encode data ranging from structured to unstructured. The result is a subtle but

substantial shift in thinking about the formerly separate technologies of content

management systems and databases, and thus what an “XML database” is.

22

Exchange of XML Data/Documents

Since XML provides a standard syntax for representing data, is text -based (Unicode),

simple to create, easily parsed, and self-describing, XML is perceived to be a key

enabling technology for the exchange of data on the Internet and within enterprises.

XML data can be:

• Transformed and rendered (with XML DTDs and XSL transformations) as desired

using simple XSL specifications;

• Stored, retrieved, and exchanged without having to manage and interpret

proprietary or incompatible data formats;

• Queried in sophisticated, dynamic ways;

• Presented as HTML pages with XSL stylesheets;

• Searched using XML-based query languages; and

• Used as a data-exchange or data-storage format.

XML can be created and republished on any platform, providing an unprecedented

opportunity for application interoperation and data integration on the Internet. There is

no need to convert XML data to other formats because XML focuses on the data and its

context without tying it to specific formats, transfer storage systems, or network

communication protocols.

It is not necessary to add individual extensions to XML, because XML is a

metalanguage and extensions can be realized on the basis of XML. No prior knowledge

of the sender application is required because the syntax of an XML document instance

describes the relationships among the various elements — either explicitly via a DTD or

implicitly by means of element context.

XML can be used in both object-oriented and relational-databases. XML encoding is

compatible with the structure and semantics of both database models. This is because

entities created in a DTD comprise a hierarchical structure. When parsed, these entities

can be treated as either objects or tables in a database.

When storing data from an XML document in a database, the DTD can be used to

validate its structure ensuring its data elements will map to the corresponding columns

23

in the database table. A table refers to a single result set (when transferring data from

the database to XML) or a single table or updateable view (when transferring data from

XML to the database). Where an XML document is generated by reading data from the

database and constructed based upon a DTD, the resultant document is implicitly valid.

Lastly, XML is being used to make searching databases (and the Internet) more

efficient. Databases have been used for years to augment HTML by querying and

automatically generating data content on Web pages (Web databases). A problem is

that data embedded within HTML pages needs to be preprocessed by special-purpose,

page-specific parsers before meaningful queries can be posed (Widom, 1999). Further,

queries are commonly limited to simple parameterized keyword-based searches that

understand documents as streams of words. Only a small fraction of records containing

the keywords or search phrase may be relevant, yet each record must be manually

investigated to assess its content. With XML, not only can data be searched for, but

also the context associated with the data c an be added to the search.

In a nutshell, XML is ideally suited to data integration and data exchange. The

structure and "meaning" of the data (at least to the extent that meaning can be

embodied in tags), as well as the data itself, is readily parsable and available through

multiple APIs, facilitating the use of powerful queries. Further, no one “owns” the XML

specification, so XML’s functionality can be added to as needed (without waiting on a

company to take action).

As a consequence, there has been a rush to integrate XML data in enterprise

databases. The problem is that, without agreed upon DTDs, XML does nothing to

support integration at the semantic level because the names and meanings of the tags

used in XML documents are arbitrary (Levy, 1999). XML in itself (as a syntax only) only

partially advances the prospects of data integration. There is a need for a DTD or

schema for describing the content and capabilities of data sources.

Enterprises seem to have acknowledged the need to agree on descriptions that provide

the semantic mapping between the data in the source and the relations in the database

schema (Date, 2000).

As yet, there are no W3C Recommendations for describing XML data sources. However,

in many enterprise sectors, DTDs and schemes are being established which enable and

optimize the access and exchange of XML content. Examples are:

24

• XML-Data/XML-Data Reduced — As discussed earlier, XML-Data is a W3C Note

(January 1998) based on a proposal that Microsoft and others submitted to the

W3C. This schema proposal is used in Microsoft's BizTalk framework. XML-Data

provides a large set of data types appropriate to database and data-centric

content interchange. It also proposes a vocabulary for defining and

documenting object classes that are strictly syntactic (for example, XML) or

those that indicate concepts and relations among concepts (as used in relational

databases and RDF). The former are called "syntactic schemas;" the latter

"conceptual schemas."

• Document Content Description (DCD) — DCD is a W3C Note (July 1998) created

in a joint effort between IBM and Microsoft. DCD uses some ideas from XML-

Data and some syntax from the W3C RDF project described earlier [13].

• Schema for Object-Oriented XML (SOX) - SOX is a W3C Note (July 1999)

developed by CommerceOne that provides functionality like inheritance to XML

structures [14]. SOX has gone through multiple versions; the latest is SOX

version 2.

• Document Description Markup Language (DDML) - DDML is another W3C Note

(January 1999) developed on the XML-dev mailing list, which creates a schema

language with a subset of DTD functionality [15].

• XML-Schema — As discussed earlier, XML-Schema is the W3C Working Draft

that specifies a formal XML Schema definition language (W3C, 2000b). XML-

Schema offers facilities for describing the structure and constraining the

contents of XML documents.

XML-Schema is divided into two documents: the W3C Schema Structures

Document (April 2000) [16] and the W3C XML Schema Data-Type Document

(April 2000) [17]. The XML-Schema Structures Document specifies ways to

identify and handle data in the XML space, and the XML-Schema Data-Type

Document addresses areas that are currently lacking in DTDs, including the

definition and hierarchical validation of data types.

While a number of schemes and DTDs are now supported in XML parsers, St. Laurent

(1999b) suggests that using the W3C XML-Schema is probably the safest long-term

25

solution. XML Schema supports namespaces and provides data-centric data types in

addition to the more document-centric data types, making XML more suitable for data

interchange applications. Built-in data types include strings, booleans, and time values,

and the XML-Schema draft provides a mechanism for generating additional data types.

An appropriate query language (or set of languages) for XML also needs to be defined.

An XML query language could provide improvements over current approaches to full-

text searching described earlier. An XML query language could make it easier to

process large collections of XML documents and extract relevant information. It might

also increase the precision of searching in documents because queries could utilize the

document's structure.

There is increasing interest in developing an XML-aware query language to take

advantage of XML's data model, while enabling the kinds of applications that the

Structured Query Language (SQL) provides for databases and the Object Query

Language (OQL) provides for objects stored in an object-oriented database [18]. Both

SQL and OQL are well established and standardized languages that are designed for

retrieving relational and object-oriented data.

The XML Query Language (XQL) appears to be the main contender to standardize a

query language that understands XML documents in the way that SQL understands a

relational database.

XQL is a SQL-like notation for addressing and filtering the specific elements and text of

XML documents. The basic constructs of XQL correspond directly to the basic structures

of XML, and XQL is closely related to XPath, the common locator syntax used by XSL

and XPointers [19]. XQL provides the ability to extract information from an XML

dictionary, rather than using an ad hoc index.

The XQL proposal was submitted in September 1998 to the W3C and an XSL Working

Group has been formed to develop the proposal.

In summary, XML breaks down the barriers between databases, document/content

management systems and data types. XML has become a common ground for data

integration and data interchange between heterogeneous databases. Standards,

schemes and query languages are still being established to enable and optimize the

access, integration and exchange of XML data/documents.

26

The next section provides an overview of products that are using XML with databases.

It should be noted that new products are entering the market weekly, so the coverage

is by no means exhaustive. Products have been gathered from Web sites, product

reviews, XML Webzines, and other XML resource guides.

XML DATABASES

This section provides an overview of products that are using XML to process

documents/data with databases.

What is an XML Database?

While it is clear that XML will become a major part of DBMS development, as yet there

is no definitive answer to “What is an XML database”? At present, there appear to be

two main approaches to storing and retrieving XML-based content:

1. A database (relational or object-oriented) to store XML data and middleware

(built-in or third party) to perform data transfers between the database and

XML document;

2. An XML server, which is an application that produces XML based upon an initial

query of some sort (e.g. an e-commerce platform for building distributed

system applications that use XML for data transfer). Typically, these are

referred to as content management systems.

The common denominator with both approaches is that XML provides a bridge between

structured and unstructured data in all classes of X-databases described below.

XML Database Solutions

Deployment of XML databases

Without conducting an extensive survey, it is difficult to determine the extent to which

X-Databases are being deployed in enterprises. Online literature indicates that

deployments to date are minimal, and that most XML database applications are using

XML in the middle tier to integrate data from various back-end databases (Bourret,

27

2000). Nearly all X-Databases run under Windows and many are beginning to support

multiple platforms.

Bourret (2000) identifies six primary classes of current X-Database solutions:

1. Middleware: Software called from an application that transfers data between

XML documents and database

2. XML-enabled databases: Relational/object-oriented databases that transfer data

between XML documents and the database;

3. XML servers: A platform for serving data in the form of XML documents to and

from distributed applications. May also include a platform for building

distributed applications that use XML for data transfer;

4. XML-enabled web servers: A Web server that serves XML — usually built from

dynamic Web pages — to browsers “on the fly”;

5. Content management systems: A system for storing human-readable XML

documents (document-centric data) and for managing fragments of documents.

6. Persistent DOM implementations: DOM implementations that use a database for

speed and to avoid memory limits. These usually also support an XML query

language.

In this paper, X-Database solutions are classified into four generic classes that focus

more on how XML is integrated:

1. Object-relational databases with an added layer of XML support;

2. Native XML databases;

3. XML middleware components to perform data transfers; and

4. Content management systems.

Most databases in these classes have integrated XML servers, which means that the

database has the ability to publish XML data/documents to a Web page.

Next, the paper takes a closer look at X-Database products in the four classes above,

and it identifies issues in using XML with such products.

28

(1) Databases with relational database kernel + XML layer

(XML →→ Middleware →→ Database)

The first class consists of XML-enabled databases (usually relational) that have an

extended XML data transfer layer (middleware) for transferring data between XML

documents and themselves.

A relational database consists of a set of tables, which in turn consist of records, which

in turn consist of fields (W3C, 1997). A record is a set of fields and each field is a pair

field-name/field-value (Date, 2000). An extended XML data transfer layer refers to

some middleware software that transfers data between an XML document and the

database.

These databases are generally designed to store and retrieve data-centric documents;

however, most databases in this class can store document-centric documents in a

single column and use text -processing extensions for queries (Kroenke, 2000).

Databases approach storage of document-centric content as a single, intact object with

its tags in a Character Large Object (CLOB) or Binary Large Object (BLOB). These

objects can be thought of as searchable content "chunks".

XML documents are not stored in their native format. The database maps an XML

document structure to a relational model, creating context to the data through tables,

columns, joins, etc.

When an XML query is submitted to the database, the database translates the query

with a transformation language — such as SQL or the XML Query Language. This

transformation process is necessary in order for the database kernel to process the

data and create a set of results. The results generally describe XML documents as

fields in tree-like database tables (sometimes with tuples and attributes) [19].

It should be noted that this class of X-Database is not purely relational. Most of the

databases listed below offer object-relational extensions for indexing, searching, and

managing both data and documents. Accordingly, this class may be more properly

referred to as object-relational DBMSs + an added XML layer.

Examples are Oracle ’s Oracle8i, Informix Internet Foundation.2000, IBM Universal

DB2, and Microsoft’s SQL Server.

29

Database Description DBMS Type Platform(s) Supports

Oracle8i Data/application
-integration
server

Relational: with
object-
relational
extensions

Commercial:
Windows NT,
UNIX,
LINUX,
SOLARIS,
HP-UX, AIX,
Sequent

SQL, PL/SQL,
JDBC,
CORBA, EJB,
C, C++,
SAX, DOM,
XSLT,
JavaBeans

Informix Internet
Foundation.2000

Database server
with XML-
enabled Web
server

Relational: with
object-
relational
extensions

Commercial:
UNIX,
Windows

JDBC, SQLJ,
SQL, ODBC

IBM DB2
Universal
Database

Object-
relational plug-
in/extender for
XML

Relational: with
object-
relational
extensions

Commercial:
Windows 95,
Windows 98,
Windows NT,
Linux, OS/2,
AIX, Solaris,
HP-UX

Java, JDBC,
SQLJ, OLE
DB, LDAP

Microsoft SQL
Server 2000

IIS ISAPI
extension to IIS
Web server with
direct access to
SQL Server

Relational: No
XML integration
yet. Preview to
SQL Server 7.0
only

Commercial:
Windows NT,
Windows
2000

SQL, XSL

XML support in Oracle8i consists of three key components:

1. An Internet File System (iFS) that allows XML documents to be mapped to tables in

the database, using custom configuration files to define how elements and

attributes are mapped to tables and columns (Oracle, 1998). IFS is a Java

application that resembles a content management system. It enables the end user

to access the data stored in the iFS through a Web browser, FTP client, e-mail client

or Windows Explorer — giving users "write once, read anywhere" access to data.

2. Next, Oracle8i provides “XML-Enabled Object Views Over Relational Data” (Oracle,

1998). As discussed earlier, this means that data in relational tables can be

rendered dynamically as structured XML “views” of information in the database.

XML content can be inserted into the database through these object views.

30

3. Lastly, Oracle8i has XML-enabled "section searching" in Oracle interMedia. Oracle

interMedia can automatically index and search XML documents and document

Fragments of any size up to 4 Gigabytes each (Oracle, 1998). This search

functionality includes hierarchical element containership, data type discrimination,

and searching on XML attributes. InterMedia also enables Oracle8i to manage

multimedia content, including audio, video, text and location information for

multimedia files and documents. It is designed to provide more precise searches

over structured documents (Muench, 2000).

Middleware components — that actually allow one to serve XML (from the

database) to a Web page — have to be “added on” to Oracle 8i. These

components include the Oracle XSQL Servlet (which includes an XML parser and

the XML SQL Utility for Java) and a Web server. These components are

described in more detail below. They are not bundled with Oracle8i itself, and

must be downloaded and installed separately.

XML support in Informix Internet Foundation.2000 (IIF.2000) consists of an XML

DataPort, a new data type (XML Data) and an XML-enabled web server named

DataBlade that can serve up XML and HTML via a SQL interface [20]. IIF.2000 offers

the ability to install custom indexes and custom access methods. It also offers a

“Virtual Table Interface” that provides a hierarchical table view of documents stored as

BLOBs or CLOBs. The new XML Data type provides mapping between tree nodes and

columns in tables, and IIF.2000 users can store information about an XML document's

structure to provide efficient structure-based queries.

IBM DB2 Universal Database (UDB) has an object-relational plug-in for XML

called an Extender [21]. The XML Extender can act as an XML DTD and support

structural text searching with DB2 Text Extender. UDB offers the ability to store

individual documents in a column (Xcolumn), or decompose documents into

tables (Xcollection tables). The XML Extender also supports SQL queries that

use XPath expressions, and it obtains document structure information from a

Document Access Definition (DAD), an XML document that contains seven types

of nodes (root_node, element_node, attribute_node, text_node,

namespace_node, comment_node, and processing_ instruction_node). One

creates the DAD to define the custom mapping between XML elements and

attributes and database columns.

31

Microsoft SQL Server 7.0 does not yet provide integral support for XML. However,

Microsoft has released a technology preview (the Microsoft SQL Server XML Technology

Preview) of the next version of SQL Server (SQL Server 2000), code-named Shiloh

[22]. The preview provides XML integration with and direct URL access to SQL Server

7.0 using Microsoft’s web server, Internet Information Server (IIS). Essentially, the

preview is an IIS ISAPI extension that provides HTTP access to SQL Server and XML

data formatting and updating capabilities. This allows queries to be sent directly to SQL

Server 7.0 via a URL with the results returned as XML formatted documents. The

preview also enables “canned” queries, such as stored procedure calls, to be stored on

an IIS server. Microsoft plans to incorporate the XML preview in SQL Server 2000,

which is scheduled to be released to manufacture (RTM) in August 2000 [23].

The format of the XML returned by the Microsoft SQL Server preview can be

customized (probably with XSL) and includes the ability to include schema information

either in a DTD or XML-Data format [24]. The Microsoft ADO 2.5 (and ADO 2.1) engine

produces the XML format. The resultant XML document is written in Microsoft’s

proprietary schema (Biztalk), which works by specifying the data types and similar

characteristics of the schema (primary key, etc.) from the database and placing this

content in the first half of the document. A similar process then extracts the data to

place XML in row nodes.

An advantage of using X-Databases in this class is that in many cases the XML layer

has been implemented as part of a product upgrade — for example, the upgrade from

Oracle 8 to Oracle8i or from SQL Server 7.0 to SQL Server 2000. For corporations that

have already invested heavily in relational databases and SQL-based technology, XML

can be used to augment their DBMS without investing in a new DBMS and tools.

Issues:

To transfer data between an XML document and a database in this class, one must

map the XML document structure to a relational database schema and vice versa.

Relational data are flat, whereas XML is a tagged hierarchical representation (with

nested structures and many levels). In this respect XML differs from relational

schemas.

For example, in Oracle8i, XML documents may be stored as:

32

1. A single document with tags in a CLOB;

2. Data by decomposing it, and distributing the data untagged across multiple tables

or columns; or

3. Fragments of XML documents as CLOBS and the rest of it as multiple tables.

These storage options create some limitations. Storing an XML document in one piece

— for example, as a single column in a table such as a CLOB column — enables full-

text indexing and content-based queries that return some information about the

document. However, it is not possible to index or update individual elements. The

database sees the XML document as a single <root> element, and sub-elements in the

structure beneath that <root> element are ignored.

Decomposing the document into single elements indexed separately in multiple tables

and columns enables document section searches that return specific content from

documents. However, retrieval operations must then read all elements individually and

join them together.

Another limitation is that relational database store an XML document untagged (i.e.

without markup). The database discards the document name and DTD, entity

declarations, CDATA sections, encoding, and the order in which attribute values and

sibling elements occur. This is done because of the way in which binary data are stored

(Bourret, 1999), and because the structure and encoding are not regarded as relevant

if data are simply being transferred. A potential problem of discarding the documents

markup and physical structure is “round-tripping” a document — that is, storing data

from a document in the database and then reconstructing the document from that data

— may result in a different document (Bourret, 1999).

A key issue is that the X-Databases in this class need additional XML middleware

support components to bridge the Relational Database Management System (RDBMS)

infrastructure. This means that some kind of data transfer middleware is needed to

convert the data from text (in the XML document) to other types (in the database) and

vice versa. The result is that data cannot be stored in the database without utilizing a

query language like SQL or XQL, and content-specific database tools (which are often

proprietary).

33

The query language is used to map the flat relational schema to XML structures. Then

complex join operations must be performed (in order to make the XML data available in

its original form). Finally, a content -specific processor is used to take relational data

from the tables, transform it into XML, and then implement the structure conveyed by

the markup in each XML document. This mapping and transformation process involves

some administrative overhead — especially in setting up the multiple table joins

(Harold, 2000).

The mapping process (from XML to a relational schema) also makes it difficult to store

XML content with a unique structure. DTDs and schemes are stored as hierarchical data

in an internal form using object-relational tables, and relational databases store, index,

and construct joins upon only those tables that correspond to the schema of the table.

Thus, if an XML document to be inserted into the database contained different data

types or column lengths, it would be necessary to rewrite the database table(s) and

update the relational schema to reflect the structure of the document.

There appear to some other scalability issues with this class of X-Database. Scalability

refers to how well a system can adapt to increased demands. XML Parsers tend to put

the entire XML document in memory (or its parsed DOM tree form), before data

extraction begins [26]. If the XML data format is comp lex (perhaps even if there are

only a few hierarchical levels), the process of mapping the XML structures to a

relational schema may involve a heavy amount of parsing in a significant DBMS. This

may degrade performance — for example, lead to unexpected application behavior, or

lack of maintainability.

Lastly, it may be argued that the use of proprietary content-specific processing

applications such as Oracle8i’s XSQL Servlet does not promote the interoperability that

underlies the XML specification. Vendors of native XML databases argue that it is better

to use XML “natively” since it is a more open universal standard [27].

(2) Native XML Databases

(XML →→ Database →→ XML)

The second class is the “native” XML DBMS. A native XML database does not use

translation routines to convert an XML document to another format. Nor is it necessary

to map the database schema to the structure of an XML document. XML can be stored,

34

integrated, processed and served directly from the database through an information

server.

These databases tend to use a different programming paradigm from the more

traditional RDMS. They often allow for object-oriented queries that return XML classes

as result sets.

Examples are Software AG’s Tamino, Stanford’s Lore, dbXML Group’s dbXML, and

DataChannel’s DataChannel Server:

Database Description DBMS Type Platform(s) Supports

Tamino Data/application-
integration
server

Hierarchical /
Native XML.
Relational and
others through
X-Node

Commercial:
Windows NT,
UNIX,
LINUX, IBM
OS/390

ODBC, JDBC,
OLE DB. SQL

Lore Native XML
DBMS

Semi-structured
Native XML

Open source XML

DbXML core
and
Enterprise
Server

Data
management
system

Native XML Open source
(GNU Public
License):
dbXML core

Commercial:
dbXML
Enterprise
Server —
Linux, UNIX,
Win32

ODBC/JDBC(T
M)-like
drivers,
CORBA, and
HTTP

DataChannel
Server
(DCS) 4.0

Enterprise
Information
Portal and data
repository

Hierarchical /
Native XML

Commercial:
Windows NT,
Sun Solaris

JDBC, HTTP

XML support in Tamino consists of an information server with an integrated XML-based

DBMS that allows native XML document storage, integration and exchange of XML-

data. Tamino is based on kernel technology (named X-Machine) that enables it to

process XML natively (Software AG, 2000) [28].

35

Tamino is specifically designed to store, manage and process structured and

unstructured data. It stores XML as objects without transformation to another data

format and offers the same XML objects as output. In this sense Tamino is a database;

however, Tamino can also manage content and process conventional data types —

including mixed data types such as text, images, and sound.

Tamino is able to store well-formed documents and data not previously defined by a

Tamino schema. This means that Tamino can handle unexpected changes in the format

of a data stream — for example, the introduction of a new data type — and the data

are processed directly on the embedded markup.

Interestingly, Tamino is also capable of managing relational data structures. It is

equipped with its own SQL engine (SQL2) that, on the one hand, can be used to store

tables embedded in XML objects. On the other hand, this SQL engine can be used to

feed applications running on the same platform as Tamino that exclusively uses

relational data schemes. This means that Tamino users can access existing external

sources (like a relational database or even a Microsoft office product like Word or

Excel) via X-Node through standard open interfaces: ODBC, JDBC and OLE DB. The

result is that existing databases can be easily integrated with X-Node. Users can

continue to work with existing (and even legacy) applications while accessing their data

through Tamino and simultaneously integrating it into XML-objects. Tamino is

customizable and allows programming of server extensions.

Stanford University’s Lore, is a native XML DBMS that has been under development at

Stanford University since 1995. Lore was originally developed for a data model named

OEM, which is a similar concept to XML without the notion of DTDs and schemes. The

DBMS prototype was extended to include full support for native XML. Lore decomposes

XML data into its individual elements and attributes, storing a graph of the data

physically on disk. In Lore, DTDs are not required; that is, the XML loaded into Lore

need not conform to any predefined grammar or schema. Lore also includes a query

language, multiple indexing techniques, a cost -based query optimizer, multi-user

support, logging, and recovery (Goldman, 1997).

DbXML is a data management system designed specifically for large collections of XML

documents [29]. This DBMS does not utilize a traditional RDBMS or object-oriented

database management system (OODBMS). Instead, XML documents are organized as

36

tree structures. The dbXML core also provides some content management functionality,

including document insertion, updates, deletions, triggers, stored procedures and

object oriented business logic for XML documents. It also enables remote data access

via ODBC/JDBC(TM)-like drivers, CORBA, and HTTP.

Finally, DataChannel Server (DCS). This product is described as an XML-enabled

Enterprise Information Portal (EIP) for efficiently publishing, managing, and retrieving

information [30]. DCS also provides XML-native support to store pure XML-tagged data

as XML objects. The server has a hierarchical architecture named the Intelligent

eXtensible Architecture (IXA), which can store metadata and content in “data,

application, and access layers” [30]. DCS can also query the object store for specific

XML objects and conduct full meta-content searches. DCS also includes an XQL query

interpreter and HTTP addressable interface for remote data access.

Clearly, the big advantage of a native X-Database is that there is no need to convert

data to and from XML using some extra middleware layer. There is no transformation

process to map XML document structures to relational schemes, and there is no need

to transform XML information into other physical data structures. Instead, XML data

are stored in the existing structures and made available for further processing. Both

data- and document-centric XML content (relational data, graphics, sound, video or

plain text) can be processed based on its embedded markup. New XML tags can be

introduced on the fly, and unexpected changes in the format of a data stream can be

processed without having to update the database schema.

Issues:

One potential limitation may be the object-oriented (OO) design of many native XML

databases. It has been suggested that the OO design may be inconsistent with the

extensibility of XML (net.uniqueness, 1999). While object-oriented databases are well

suited to present the structures of XML documents, the use of well bounded objects

forces some association with a certain behavior of data within an object. Yet, XML

markup may describe complex and multiple simultaneous relationships or behavior of

data — necessitating objects to express the effect of relationships and behavior suited

to each of the perspectives encoded in the markup (net.uniqueness, 1999). An

example is document-centric data — this data type cannot be represented as a simple

37

object, which is inconsistent with the fundamental object-oriented design goal of

encapsulation.

Lastly, while vendors like Software AG claim that products like Tamino can be

integrated with existing databases, it is not clear how easy it will be to integrate

Tamino’s object-oriented application server with relational databases. Further research

is needed to determine how Tamino integrates XML content stored in existing RDBMSs.

(3) XML Middleware Components

(XML →→ Database →→ Middleware →→ XML)

The third class of X-Database solutions is Middleware — the XML data transfer software

that transfers data in the middle tier between XML documents (or some XML-enabled

application) and a back-end database(s). It appears that most middleware is integrated

with a Web server, especially if it is accessing a distributed/remote data source.

The following products are just a small sampling of the XML middleware. The examples

include Oracle’s XML SQL Utility for Java and XSQL Servlet, Stonebroom’s ASP2XML,

Beanstalk’s Transparency, IBM’s DatabaseDom, DBIx::XML_RDB, XML Software

Corporation’s InterAccess, ObjectDesign’s eXcelon, Bourret’s XML-DBMS, Manuel

Lemos’ Metabase, and Bluestone’s Bluestone XML-Server.

Database Description DBMS
Type

Platform(s) Supports

XSQL Servlet
(+ XML SQL
Utility for
Java)

Java Servlet and set
of Java classes for
transferring data
between a relational
database and an
XML document

Relational
(JDBC)

Commercial:
all Java
platforms

SQL, Java /
JDBC

ASP2XML COM object for
transferring data
between XML
document and
RDBMS

Relational
(ODBC or
OLE-DB)

Commercial:
Windows NT

ASP

38

Beanstalk Object-relational
engine that
generates XML from
back-end relational
databases (B2B
orientation).

Object-
relational
(ODBC)

Commercial Java/JDBC

DatabaseDom JavaBean for
transferring data
between a DOM tree
and a JDBC
database

Relational
(JDBC)

Commercial:
all Java
platforms

Java/JDBC

DBIx::XML_R
DB

PERL module for
transferring data
between XML and
DBI databases

Relational
(DBI)

Open Source Perl

InterAccess Client/server
package for
accessing ODBC/OLE
DB databases via
the Internet

Relational
(ODBC, OLE
DB)

Commercial:
Windows NT

SQL, ODBC,
OLE DB

XML-DBMS Java classes for
transferring data
between a RDBS and
an XML document

Relational
(JDBC)

Open Source Java / JDBC,
Perl

eXcelon B2B Portal Server
aka
data/application-
integration server
with mid-tier
development
environment

Integrated
object-
relational
DBMS
(ODBC and
OLE-DB)
(ObjectStor
e)

Commercial:
Win32

SQL, XQL,
DOM, Java,
COM, and
server-side
XSLT and
XPath., ODBC,
OLE-DB

Metabase Set of PHP classes
for database
interactivity

Relational
(SQL)

Open source PHP, SQL,
PostgreSQL,
Mini-SQL

Bluestone
XML-Server

B2B Information
integration server

Relational
(JDBC) and
non-
relational
through
Data Source
Integration
Modules

Commercial:
all Java
platforms

HTML, DHTML,
XML, Java,
JavaScript,
ActiveX,
VBScript,
VRML, any
Java class /
applet

39

XSQL Servlet is a proprietary Java servlet that transfers data from a relational

database to an XML document. The servlet is template-driven, which means that there

is no predefined mapping between document structure and database structure

(Bourret, 1999). Instead, retrieval commands are embedded in a template as <query>

elements. (Bourret, 2000). The servlet provides support for passing query parameters

through HTTP and for processing the output document through a Web server (Oracle,

1999).

The concept behind the XSQL Servlet is that no programming is required to transfer

XML data between a user and the database — the Java code in the servlet handles all

XML processing.

As shown in Figure 1, the Servlet has two components:

§ XML Parser for Java: An XML parser to process the SQL queries, query the

database, obtain database results, and parse the XML plus, and an XSLT Processor

— to transform the data into any format using XSL stylesheets; and

§ XML SQL Utility: A set of Java classes to write data from XML input directly into a

database table or view, and to pass a query to the database and generate an XML

document (text or DOM) from the results. These classes may be used through one

of the provided front ends or in a user-written (Java) application [31]. The product

is model-driven, which means that a data model of the structure of the XML is

created and mapped to the structures in the database (and vice versa) (Bourret,

1999). When transferring data from the database to XML, the user provides either a

SELECT statement or a JDBC result set; and the results are returned as an XML

document or DOM Document.

Figure 1

40

ASP2XML provides an interface between ODBC or OLE-DB compliant databases and any

XML-enabled client. It is designed for use either with Microsoft Active Server Pages

(ASP) scripts, or as a stand-alone COM-compliant ActiveX DLL component. The product

is model-driven and the XML document is modeled as a single table. Data are

transferred from the database to XML using a single SELECT statement and both the

input and output contain ASP2XML-specific tags (that are required for processing).

BeanStalk 1.0 is an object-relational engine that can access any relational database or

other ODBC data source and provide SQL queries via Java/JDBC. Query results are

output as an XML document using a tree-like object model, where nesting in the result

sets translates to nesting in the XML document. The user can specify whether to return

results as elements or attributes, as well as the names of those elements and

attributes. Beanstalk claims to have a patented (OLAP) message-based technology that

can process large or complicated queries faster than a conventional relational

database, even while accessing the same data over ODBC.

DatabaseDom is a combination of Java JDBC, IBM Data Access Bean and DOM

programming. An XML template file defines the database and XML structure. A

JavaBean reads this, and creates XML from the results of a database query, and also

updates the database based on a new or modified XML structure [32].

DBIx::XML_RDB creates XML data from DBI data sources. It allows one to extract data

from a database, and manipulate later using XML::Parser [33].

InterAccess enables access to any ODBC/OLE DB compliant SQL database via the

Internet remotely without the need to have any ODBC drivers on the client. All

database access is done via the InterAccess server using Microsoft ADO (the

ODBC/OLEDB drivers are located there). The server will store and retrieve data as

XML, or receive data in XML format from the client [34].

XML-DBMS is a set of Java packages for transferring data between XML documents and

relational databases. It views the XML document as a tree of objects in which element

types are generally viewed as classes and attributes, and PCDATA as properties of

those classes. It then uses an object-relational mapping to map these objects to the

database. An XML-based mapping language is used to define the view and map it to

the database (Bourret, 2000).

41

eXcelon is a midtier, XML-based data-integration server that utilizes an object-oriented

database called ObjectStore. eXcelon’s goal is to manage, distribute, and cache large

amounts of data- and document-centric data in the middle tier. The ObjectStore

eXcelon data sever stores XML in ObjectStore. XML is parsed and then stored in

ObjectStore in its parsed format; that is, its building elements are stored as individual

objects for performance and reuse of XML elements. It is possible to add new elements

to any node on the fly. EXcelon can integrate structured, semi-structured and

unstructured data in spreadsheets, COBOL files and Web pages.

eXcelon caches XML and provides a query engine for accessing subsets of XML. It also

handles transactions and synchronization with multiple back-end data sources. The

cache is synchronized with all connected databases. A limiting factor is that eXcelon

cannot write changes made by a client back to a relational database backend — only to

its own data cache. EXcelon also features a complete development environment

including an editor, graphical tools and an in-built browser.

Metabase is a set of classes for the PHP scripting language that provide DBMS

independent access and management of databases using XML. The package contains a

set of functions that call the selected DBMS driver objects functions, and a parser class

that can interpret DBMS independent database schema file defined in a custom XML

format. This class enables the database structure and contents to be discarded in

Metabase’s XML format parser, and thus gives the ability to move data between

databases of different DBMS vendors.

Bluestone XML-Server is an XML-based information integration platform for deploying

B2B data interchange. Bluestone automates the data exchange process by providing a

platform to build integration objects that represent applications and data sources. The

server has the ability to dynamically generate, interpret and receive XML documents

from distributed applications. The application development environment appears to

include, inter alia, Visual-XML (facilitates dynamic XML document management), XML-

Contact (a contact management application for the Palm Pilot) and XwingML (an

application to build XML documents that define the complete Java Swing Graphical User

Interface).

42

The benefit of products in this class is that they make it easier to integrate XML with a

variety of databases (especially legacy DBMSs) in the back-end; perhaps making it

easier develop a scalable database system that supports XML.

Apart from the plethora of choices in this X-Database class, the only issue appears to

be that most middleware products only support a specific type or range of database

connectivity.

(4) Content Management Systems

(XML →→ Content / Documents →→ XML)

Content management systems are specifically designed for storing, retrieving, and

assembling documents from document fragments (content) (Bourret, 2000). They

generally include such features as editors, version control, and multi-user access. Most

use a back-end database, although this is generally transparent to the user.

Examples of content management systems that support XML are Chrystal Software’s

Astoria, Inso’s DynaBase, and Eidon’s XMLBase:

Content
Management

System

Description Type Platform(s)

Astoria Document
Management
System for
technical
publications

Based on
ObjectStore,
ObjectDesign’s
object-oriented
database

Commercial:
Windows NT, Win
95 / 98, UNIX, Sun
Solaris, LINUX,
IBM OS/390

DynaBase Content repository
for enterprise
collaboration +
integrated Web
server

Based on
ObjectStore

Commercial:
Windows NT 4.0,
Win 95 / 98, Sun
Solaris 2.6
Macintosh OS 8.1

Astoria is a content management solution for enterprises producing technical

publications and other kinds of structured documents. XML support in Astoria consists

of new media and structured file formats for both SGML and XML.

Dynabase combines XML-enabled content management capabilities with an integrated

Web server. It is designed for use by distributed work groups throughout an enterprise,

43

enabling co-workers to collaborate directly on Web site projects over the Internet and

intranets.

Issues

Products in this class are designed to manage XML documents regardless of format or

source. Most products have a “content repository” that stores collections of documents,

which can include multimedia and document files and the individual data structures

within them — allowing that data to be indexed, searched, and extracted on demand.

The real benefit of using XML-enabled content management systems is the ability to

efficiently gather, manage and dynamically deliver vast quantities of semi-structured

and unstructured document-centric content from a back-end database on a wide array

of Web sites and other electronic information-sharing mechanisms. Obviously, these

products are not database solutions in themselves; they are more oriented toward XML

document management and delivery.

The next section presents a simple implementation of an X-Database in Oracle8i using

the middleware Java servlet, XSQL Servlet.

44

IMPLEMENTATION – RETRIEVING & STORING XML IN ORACLE8I

A complete description of how XML is used with above-mentioned X-Database products

is beyond the scope of this paper. Instead, this section provides proof-of-concept of

technical integration issues in using: (1) Oracle8i, which falls into the first class of X-

Database products above; and (2) XSQL Servlet, middleware that transforms XML into

Oracle8i’s RDBMS.

The main questions of interest were:

§ How easy or difficult is it to implement XML in Oracle8i?

§ How well do the typical document structures of XML information objects map to the

storage and transmission framework of relational tables and columns?

The implementation involved developing a simple XML application in Oracle8i for

managing employee records. The object was to store data in the database and then to

expose that data as XML on a Web page using XSQL pages.

The steps involved in installing Oracle8i, designing the database schema, mapping the

XML document structure to the database schema, and the process to retrieve XML from

the database, are described in detail below.

Oracle8i - Installation and Process Overview

Installing Oracle8i was a non-trivial task in itself. Attempts were made to install

Oracle8i on Red Hat Linux 6.1 and Microsoft Windows NT 4.0.

In a typical installation, an initial database is installed by default. During the initial

database installation, the Oracle Universal installer set up some initial listeners under

the SID of ORCL — without any kind of warning/notification. The listener is an HTTP

daemon (httpd) that listens for requests for database service.

At an earlier point in the installation, a global database name and SID were entered for

the Oracle8i database server, creating a home of LCD and SID of LCD. The database

server was also configured to use a TCP/IP listener connection named LCD.

45

After the server was installed, the Database Creation Assistant automatically created a

database under Oracle8i. Several permission and connection errors occurred during the

database creation process. Subsequently, when the Oracle8i Net8 utility was used to

test the listener, there was no response from the database. It appears that there was a

conflict between the initial listener set up under the ORCL SID and the LCD SID.

After several unsuccessful attempts at creating a database in Oracle8i Personal Edition,

Oracle8i (Enterprise Edition 8.1.6) was finally installed on an NT Workstation 4.0

machine. All default settings used in a “typical” installation were accepted. The initial

database was installed accepting all default settings. The global database name and

SID “ORCL” were used.

For the successful installation of the Oracle XSQL Servlet, additional software needed

to be installed, including:

§ An external Java Virtual Machine – version 1.1.8 of the Java Development Kit (JDK)

[35];

§ The Java Servlet Development Kit (JSDK) – version 2.0, which consists of a self-

extracting and installing executable;

§ A Web Server that supports Java servlets to serve up the XML pages – Apache

1.3.12. The Web server is needed to invoke the XSQL Servlet with an XSQL page,

and then deliver the results to a Web browser. Apache was configured as an NT

service so that it would start automatically in Windows NT.

§ The Jserv module for Apache, so that it can run the Oracle XSQL servlet – Jserv

1.1.

The Java Virtual Machine was installed first, then JSDK 2.0, then Apache 1.3.12. A

directory alias was configured in the Apache configuration to access XML-related pages

as though they were part of the Apache home directory structure. In the httpd.conf

file, the following line was added to set the DocumentRoot and Directory to “c:\xsql”:

Alias /xsql/ “C:/xsql/”

46

Jserv 1.1 was installed accepting all defaults. The result was a Web Server that

supports both Java servlets and an Oracle8I database.

The last step was to install the XSQL Servlet. The XSQL Servlet executable includes

JDBC drivers, XML parser for Java and the XML SQL Utility classes in one downloadable

package from Oracle. The XSQL Servlet file (the distribution) was extracted to the root

directory (C:\). When the distribution extracted in WinZip, it created subdirectory

named “xsql” (C:\xsql).

Next, the Jserv mo dule’s configuration was edited to utilize the new Java classes

installed earlier. This involved editing C:\Program Files\Apache Jserv

1.1\conf\jserv.properties and inserting the following lines:

wrapper.classpath=C:\xsql\lib\oraclexsql.jar
wrapper.classpath=C:\xsql\lib\classes111.zip
wrapper.classpath=C:\xsql\lib\xmlparserv2.jar
wrapper.classpath=C:\xsql\lib\oraclexmlsql.jar
wrapper.classpath=C:\xsql\lib

These wrapper.classpath directives were added after existing directives in

jserv.properties.

Next, jserv.conf (in the same path as jserv.properties) was edited to add

ApJServAction lines for xsql as follows:

ApJServAction .xsql /servlets/oracle.xml.xsql.XSQLServlet

Finally the $ORACLE_HOME\xsql\lib\XSQLConfig.xml file, which contains information

about database connections, was edited to add connection information for the

employee records database using the global database name and SID “ORCL”.

Note: The XSQL Servlet installation was tested by running the xsql.bat file and then

checking whether or not the demo connections on the default page worked at

http:\\localhost:7070\xsql\index.html.

47

Database Design

Step 1 - Designing Database Schema

With Oracle8i and its additional components installed, the next step was to create a

database schema for storing employee in the database. The following DTD was

developed (Figure 3 - emp.dtd):

Figure 3 – emp.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!--PURPOSE: This DTD describes pages containing employee records-->
<!--===-->
<!ELEMENT EMPLIST (EMP)*>
<!ELEMENT EMP (EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM?,
DEPTNO)>
<!ELEMENT EMPNO (#PCDATA)>
<!ELEMENT ENAME (#PCDATA)>
<!ELEMENT JOB (#PCDATA)>
<!ELEMENT MGR (#PCDATA)>
<!ELEMENT HIREDATE (#PCDATA)>
<!ELEMENT SAL (#PCDATA)>
<!ELEMENT COMM (#PCDATA)>
<!ELEMENT DEPTNO (#PCDATA)>
<!--===-->

Note that <EMP> is defined as the root element, or basic structural element. Within

<EMP> tag, are child elements that define more granular aspects of an employee

record.

Step 2 - Mapping XML document structure to database schema

The next step was to map the DTD, which represents the structure of XML documents,

to a database schema. At this point, it was necessary to look at the data types to be

stored.

As discussed above, Oracle8i stores XML documents as:

1. Structured data (employee records data) in one location decomposed within

database tables — data-centric approach; and/or

2. Related unstructured data (for example, employee reviews) within a CLOB —

document-centric approach.

48

Given the structured nature of the data and the limitations of the second CLOB storage

model discussed above (i.e. the granularity of metadata are the complete document),

the first storage model was used. The DTD was mapped directly to tables in the

database.

The DTD in Figure 3 was mapped to a database schema by creating a single EMP table.

SQL was used to create the tables in Oracle8i’s text editor, PL*SQL. PL*SQL enables

the creation of database objects at the command line from an sql> prompt. The

following SQL code shows the structures of the database tables:

create table emp (
 empno number primary key,
 ename varchar2(30) not null,
 job varchar2(30),
 mgr number,
 hiredate date,
 sal number,
 comm number
 deptno number not null,
);

This table, EMP, was created using a direct copy of a similarly named table owned by

the user ORACLE (by utilizing the SQL SELECT command). The table was thus

populated with sample employee records from a table installed by default during the

Oracle8i installation.

Database to XML: Retrieving XML

Step 3 - Retrieve XML from Database using a Web Form

This step involved designing and building a Web page to retrieve a list of employee

records from the Oracle8i database. The XSQL Servlet was used to take the source

XML and transform it into a viewable HTML page.

Here are the steps followed to retrieve a list of all employees from the database

arranged by job type, together with details of the employee who has the highest

salary:

1. Created an XML Page named emp.xsql (Figure 4). Emp.xsql is simply a well-formed

XML document with the extension .xsql. The XSU allows one to provide either a

49

SELECT statement or a JDBC result set. This particular XML Page defines a set of

queries to retrieve all employees by job type (JOB) and highest salary (SAL) as a

SELECT (SQL) statement.

Figure 4 – emp.xsql

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
<xsql:include-request-params/>
<xsql:query find="%"
 sort="JOB"
 null-indicator="yes" >

 SELECT *
 FROM EMP
 WHERE JOB LIKE UPPER('%{@find}%')
 ORDER BY {@sort}

</xsql:query>
<xsql:query sort="ENAME"
 null-indicator="yes" >

 SELECT ENAME, EMPNO, SAL
 FROM EMP
 WHERE SAL IN (SELECT MAX (SAL) FROM EMP)
 ORDER BY {@sort}

</xsql:query>
</page>

This page conforms to the basic structure of an XSQL Page as follows:

• The file starts with the standard XML header: <?xml version="1.0" ?>

• It has an optional XSL stylesheet tag: <?xml-stylesheet type="text/xml"

href="emp.xsl"?> to specify the format of the XML in the Web browser (or on

some other client device)

• The <xsql:query> tag identifies the components needed to complete the query,

including the root document element (EMP), table row element (JOB), and the

actual query. The query is regular <SQL>. The tag also identifies a namespace

for defining the xsql keyword and tells the XSQL Servlet to use the (predefined)

database connection named demo. Oracle’s Java, C & C++ XML parsers all have

integrated support for such namespaces.

50

2. Used an XSL stylesheet named emp.xsl (provided by Oracle as a demo in the XSQL

installation), to format the XML documents that represent the query results. The

stylesheet, emp.xsl, references another stylesheet, rowcol.xsl, which was installed

by default in the path ../common/rowcol.xsl.

3. In a Web browser (Internet Explorer 5.0), entered a URL that points to the XSQL

Page emp.xsql (http://localhost:7070/xsql/emp.xsql). The .xsql extension indicated

to the Web server to use the XSQL Servlet to handle this request.

4. The XSQL Servlet passed the emp.xsql to the XML Parser for Java (in the form of a

string). Emp.xsql was then parsed and processed by the XML Parser and XSLT

Processor. The Servlet found all elements with an <xsql:query> tag, and submitted

all SELECT statements in the <xsql:query> tags as SQL statements to the

underlying XML SQL Utility (XSU), which then passed the queries to the Oracle8i

database via JDBC (when processed, these query tags were replaced by the result

of the queries).

5. The database used the information contained in the <connection> attribute to log

on. The attribute connection="demo" defines where to find the information needed

to connect to the database. The XSQL Servlet uses the configuration file,

XSQLConnections.xml. This file can have multiple entries where each one

represents a separate database connection. The default database connection entry,

demo, in the XSQLConnections.xml file was defined as follows:

<?xml version="l.O" ?>
<connectiondefs dumpallowed="no">
 <connection name="demo">
 <username>scott</username>
 <password>tiger</password>
 <dburl>jdbc:oracle:thin:@localhost:1521:ORCL</dburl>
 <driver>oracle.jdbc.driver.OracleDriver</driver>
 </connection>
</connectiondefs>

Note that the default user is SCOTT (with TIGER as the password).

Database returned the query results to the XSU, which wrapped the data in its

schema creating the XML result returned to the Servlet. The Servlet formatted the

query results, and then passed the completed document back to the Web browser.

51

6. The Web server returned a canonical document, containing a list of records. The

browser then received the response to the requested emp.xsql page in HTML

format. Figure 5 shows the results:

Figure 5

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7788 SCOTT ANALYST 7566 4/19/1987 0:0:0 3000 20
7902 FORD ANALYST 7566 12/3/1981 0:0:0 3000 20
7369 SMITH CLERK 7902 12/17/1980 0:0:0 800 20
7876 ADAMS CLERK 7788 5/23/1987 0:0:0 1100 20
7934 MILLER CLERK 7782 1/23/1982 0:0:0 1300 10
7900 JAMES CLERK 7698 12/3/1981 0:0:0 950 30
7566 JONES MANAGER 7839 4/2/1981 0:0:0 2975 20
7782 CLARK MANAGER 7839 6/9/1981 0:0:0 2450 10
7698 BLAKE MANAGER 7839 5/1/1981 0:0:0 2850 30
7839 KING PRESIDENT 11/17/1981 0:0:0 5000 10
7499 ALLEN SALESMAN 7698 2/20/1981 0:0:0 1600 300 30
7654 MARTIN SALESMAN 7698 9/28/1981 0:0:0 1250 1400 30
7844 TURNER SALESMAN 7698 9/8/1981 0:0:0 1500 0 30
7521 WARD SALESMAN 7698 2/22/1981 0:0:0 1250 500 30

ENAME EMPNO SAL
KING 7839 5000

The top table in Figure 5 shows the results of the query to retrieve all employees by

job type. The bottom table shows the results of the query to select the employee with

the highest salary.

This example demonstrates how the XSQL Servlet generates XML from data sets. The

XSQL Servlet, separate middleware software, is entirely responsible for transforming

the XML document with a stylesheet. It is the XSQL Servlet that handles the tasks of

establishing a connection to the database, submitting the query, and transforming and

formatting the results into HTML (or some other format). The Web Server merely sends

the transformed document back to the web browser.

If the line declaring the stylesheet emp.xsl were not included in emp.xsql, the XSQL

Servlet would return the following XML document (Figure 6):

52

Figure 6

<?xml version = '1.0'?>
<page>
<request><parameters/><session><wtgbid>cd92uajt</wtgbid></session><
cookies/></request>
<ROWSET><ROW
num="1"><EMPNO>7876</EMPNO><ENAME>ADAMS</ENAME><JOB>CLERK</JOB><MGR
>7788</MGR><HIREDATE>5/23/1987 0:0:0</HIREDATE><SAL>1100</SAL><COMM
NULL="YES"/><DEPTNO>20</DEPTNO></ROW><ROW
num="2"><EMPNO>7499</EMPNO><ENAME>ALLEN</ENAME><JOB>SALESMAN</JOB><
MGR>7698</MGR><HIREDATE>2/20/1981
0:0:0</HIREDATE><SAL>1600</SAL><COMM>300</COMM><DEPTNO>30</DEPTNO><
/ROW><ROW
num="3"><EMPNO>7698</EMPNO><ENAME>BLAKE</ENAME><JOB>MANAGER</JOB><M
GR>7839</MGR><HIREDATE>5/1/1981
0:0:0</HIREDATE><SAL>2850</SAL><COMM
NULL="YES"/><DEPTNO>30</DEPTNO></ROW><ROW
num="4"><EMPNO>7782</EMPNO><ENAME>CLARK</ENAME><JOB>MANAGER</JOB><M
GR>7839</MGR><HIREDATE>6/9/1981
0:0:0</HIREDATE><SAL>2450</SAL><COMM
NULL="YES"/><DEPTNO>10</DEPTNO></ROW><ROW
num="5"><EMPNO>7902</EMPNO><ENAME>FORD</ENAME><JOB>ANALYST</JOB><MG
R>7566</MGR><HIREDATE>12/3/1981
0:0:0</HIREDATE><SAL>3000</SAL><COMM
NULL="YES"/><DEPTNO>20</DEPTNO></ROW><ROW
num="6"><EMPNO>7900</EMPNO><ENAME>JAMES</ENAME><JOB>CLERK</JOB><MGR
>7698</MGR><HIREDATE>12/3/1981 0:0:0</HIREDATE><SAL>950</SAL><COMM
NULL="YES"/><DEPTNO>30</DEPTNO></ROW><ROW
num="7"><EMPNO>7566</EMPNO><ENAME>JONES</ENAME><JOB>MANAGER</JOB><M
GR>7839</MGR><HIREDATE>4/2/1981
0:0:0</HIREDATE><SAL>2975</SAL><COMM
NULL="YES"/><DEPTNO>20</DEPTNO></ROW><ROW
num="8"><EMPNO>7839</EMPNO><ENAME>KING</ENAME><JOB>PRESIDENT</JOB><
MGR NULL="YES"/><HIREDATE>11/17/1981
0:0:0</HIREDATE><SAL>5000</SAL><COMM
NULL="YES"/><DEPTNO>10</DEPTNO></ROW><ROW
num="9"><EMPNO>7654</EMPNO><ENAME>MARTIN</ENAME><JOB>SALESMAN</JOB>
<MGR>7698</MGR><HIREDATE>9/28/1981
0:0:0</HIREDATE><SAL>1250</SAL><COMM>1400</COMM><DEPTNO>30</DEPTNO>
</ROW><ROW
num="10"><EMPNO>7934</EMPNO><ENAME>MILLER</ENAME><JOB>CLERK</JOB><M
GR>7782</MGR><HIREDATE>1/23/1982
0:0:0</HIREDATE><SAL>1300</SAL><COMM
NULL="YES"/><DEPTNO>10</DEPTNO></ROW><ROW
num="11"><EMPNO>7788</EMPNO><ENAME>SCOTT</ENAME><JOB>ANALYST</JOB><
MGR>7566</MGR><HIREDATE>4/19/1987
0:0:0</HIREDATE><SAL>3000</SAL><COMM
NULL="YES"/><DEPTNO>20</DEPTNO></ROW><ROW
num="12"><EMPNO>7369</EMPNO><ENAME>SMITH</ENAME><JOB>CLERK</JOB><MG
R>7902</MGR><HIREDATE>12/17/1980
0:0:0</HIREDATE><SAL>800</SAL><COMM
NULL="YES"/><DEPTNO>20</DEPTNO></ROW><ROW
num="13"><EMPNO>7844</EMPNO><ENAME>TURNER</ENAME><JOB>SALESMAN</JOB
><MGR>7698</MGR><HIREDATE>9/8/1981
0:0:0</HIREDATE><SAL>1500</SAL><COMM>0</COMM><DEPTNO>30</DEPTNO></R

53

OW><ROW
num="14"><EMPNO>7521</EMPNO><ENAME>WARD</ENAME><JOB>SALESMAN</JOB><
MGR>7698</MGR><HIREDATE>2/22/1981
0:0:0</HIREDATE><SAL>1250</SAL><COMM>500</COMM><DEPTNO>30</DEPTNO><
/ROW></ROWSET>
<ROWSET><ROW
num="1"><ENAME>KING</ENAME><EMPNO>7839</EMPNO><SAL>5000</SAL></ROW>
</ROWSET>
</page>

As displayed above, the result is an XML document containing data from the rows. In a

nutshell, the mapping can be described as follows:

• Database table names à Document element (EMP) à ROWSET tag.

• Database column names à Top-level elements/tag names à ROW tag.

• Scalar columns à Elements with text -only content (ENAME) à Elements nested

within the ROW node.

The output XML document contained no CDATA or entity usage, and the order in which

sibling elements and attributes appear is the order in which the data was returned by

the database. The database discarded all encoding information, including the

document’s name and DTD, and the order in which attribute values and sibling

elements occurred.

Issues

In this implementation, XML data are transferred to and from database tables as

fragments of decomposed XML documents — rather than tables specifically designed to

model XML documents.

Unlike a content management system that views a set of XML documents as exactly

that — a set of documents — the Oracle8i iFS treats each document as a database

"load file," where all markup is discarded and document contents are merged into a

single database table. The iFS stores only those XML documents that correspond to the

schema of a database table. DTDs and schemes are integrated as hierarchical data in

an internal form using object-relational tables.

The markup is discarded because the source XML document must be transformed into

the precise physical structure needed for automatic insertion into the relational

database tables. Bourret (1999) says this is acceptable because of the way in which

54

binary data are stored, and because the structure and encoding may not be relevant if

the data are simply being transferred.

Organizing XML data in this tabular or “graph” fashion seems to work when it is more

important to access the data itself (rather than the actual entities and encodings used

within XML documents). However, it may be more difficult to store XML data that

follows a unique schema (Widom, 2000). New elements or attributes cannot be added

to the DTD to reflect new data types or extend existing ones without manually

changing the database schema — for example, to add a new table for a new top level

element.

This limitation may confine the extensibility of the DBMS later on in the lifecycle of the

system, especially if the database schema needs to expand to include new data types

or information objects that cannot be easily mapped to the storage and transmission

framework of a relational database. For example, it might be difficult to integrate

emerging industry standard DTDs/schemes or industry vocabularies into the database

in the future. This is becoming a significant issue as industry- and domain-specific

DTDs and schemes evolve. Retrofitting a schema onto a relational database schema is

likely to be difficult if there are numerous variations in structure.

The clear answer to the question posed earlier — how well do XML document structures

map to the storage and transmission framework of Oracle8i — is, in the author’s

opinion, not well. It seems the XSQL Servlet really does nothing more than add

another layer of complexity and overhead to the Oracle8i database.

It is definitely a drawback that the meaning and context of the data relies totally on

further processing applications like the XSQL Servlet, and it may be argued that this

may limit the future of X-Database technology in this product class.

Another limiting factor is that the database server has to make a new database

connection for every HTTP request that requires database access. The browser submits

the form request via HTTP. Then the XSU component of the XSQL Servlet has to

convert all the input name/value elements into XML and the XSLT processor has to

apply the XSL sylesheet to map that internal format into the database table (or view).

With a large complex database the overall system may not be very scalable, and

response time may be slowed by all the administrative overhead of establishing new

database connections.

55

Given the less than straightforward implementation of Oracle8i and the XSQL Servlet,

and the need to map XML documents to the underlying object-relational storage, it

may be concluded that Oracle8i augments, rather than integrates, XML to the Oracle 8i

RDBMS.

CONCLUSIONS & FUTURE CHALLENGES

XML presents fundamental changes to the ways organizations think about and utilize

data and metadata. XML separates data from its presentation, so it is easy to change

the look and feel of data simply by changing the XSL stylesheet. Since the data for the

site can be stored in a database, it also has the advantage of being more easily

maintained.

There are significant gains to be made in data integration and interchange from XML’s

open design. The XML model offers the opportunity to build flexible, interoperable XML

databases that support both structured and unstructured data. It can extract

information that provides context and semantics. It is portable over existing Internet

protocols, and across distributed systems and operating systems. It provides the ability

to converge and map data between disparate systems. These capabilities provide an

unprecedented opportunity to exchange data between different database platforms

(and Internet applications).

XML may also mitigate the complexity of developing custom database applications for

the Internet. It’s rich data structures and metadata enable users to select, specify, and

manipulate different views of the same data. Accompanying technology like XSL can be

used to render the same data on different internet-enabled devices like handheld

devices.

The future challenges in integrating XML with databases are to:

1. Use XML for manipulating data without imposing an inflexible data structure or

relationship expressed in a schema or DTD.

The kinds of data st ructures that appear occur in XML are richer than in relational

data. As the implementation demonstrates, RDBMS architectures like Oracle8i

generally require data to be much more rigidly structured than XML. A database

56

schema must be designed carefully before any data is loaded. This assumes that a

particular structure or patterns pre-exists within the XML data.

This approach makes it difficult to manage data that does not adhere to predefined

table structures, and if the structure of the data changes in any way, then the

database schema must be modified as well. Further, while object-oriented

databases do not require rigid table structures, they still rely heavily on predefined,

constant schemes.

There is no doubt that there is a need for some kind of DTD or schema within an X-

Database (despite the fact that the XML specification does not require the structure

of data to be fixed ahead of time). Without a structure for the tag and attributes

patterns in a database, it could be difficult for users to formulate meaningful

queries. The execution engine also needs some understanding of a database's

structure in order to process a query efficiently.

However, this need for accompanying structural rules must be offset against the

need to make X-Databases generalized and adaptable enough to respond — to XML

records written in the database — by reading, writing, querying, and generally

processing them in sync with the markup. The relationship between XML's optional

DTDs and traditional database schemes must be extensible in order to reflect

changes in markup.

2. Find more efficient ways to structure and tag document-centric data in relational

databases — from one or more tables as a hierarchical XML document. Relational

databases have no problem presenting structured XML (data-centric) data. Since

most transactional data like invoices is data-centric, it is likely there will continue to

be a market for relational databases that support XML.

3. Create efficient means to publish relational data/documents as XML without

proprietary translation routines for querying XML content.

The integration of data storage and retrieval components into native XML databases

promises to provide more seamless transparent integration of XML data types.

Enterprise database vendors have acknowledged this. Oracle says that it plans to

integrate storage and retrieval components natively into the Oracle Internet platform in

the future (Wiseth, 2000).

57

Further research is needed to characterize and compare the performance of native X-

Database alternatives. Vendors like Software AG claim that native XML storage is more

scaleable; that it serves XML faster and more efficiently than relational databases. This

research should evaluate how native databases handle large volumes of XML files, and

how they scale up in serving native XML to clients from a number of data sources.

It seems likely that future X-Databases will use a declarative XML query language (and

query processor) — perhaps XQL — that will be as important to XML applications as

SQL has been to traditional enterprise database applications. As more and more data is

exchanged and ultimately stored in XML, users and applications alike will benefit from

the ability to query X-Databases.

In conclusion, it seems likely that future X-Databases will evolve in a way that reflects

XML itself — they should be freely extensible. In other words, X-Databases should be

defined and manipulated by XML markup, and be cast in a document structure that

reflects (and adapts to changes in) an XML schema or DTD. They should have the

ability to accept input data, and then maintain and present it for each user in a

structure suited to that user’s role and understanding of the data. Lastly, they should

also support industry-wide standards (such as W3C Recommendations) and domain-

specific vocabularies.

58

NOTES

[1] North, K. (1999). Modeling, Metadata, and XML (Web Techniques, June 1999)

[Online]. Available: http://www.webtechniques.com/archives/1999/06/data. (August

7, 2000).

[2] XML Linking Language (XLink). W3C Working Draft 21-February-2000. Available:

http://www.w3.org/TR/2000/WD-xlink-20000221/. (August 7, 2000).

[3] XML Pointer Language (XPointer) Version 1.0. W3C Candidate Recommendation 7

June 2000. Available: http://www.w3.org/TR/2000/CR-xptr-20000607. (August 7,

2000).

[4] The XML Specification 1.0 defines a Declaration for XML, which is fixed for all

instances. The default attribute of the Declaration is version="1.0" and encoding="UTF-8".

An XML version of the specified DTD must be accessible to the XML processor, either

locally or via the network (e.g. an external URL specified by a System Identifier such

as <!DOCTYPE advert SYSTEM "http://www.ils.unc.edu:7070/emp.dtd">.

 [5] Reimers, B. D. (2000). Consolidate Your Data in Seven Steps – How to Gain a

Consolidated View [online]. Available:

http://www.planetit.com/techcenters/docs/Database/Product/PIT19990125S0010.

[August 7, 1999].

[6] Oracle Corporation. (2000). ORACLE ENHANCES INTERNET PLATFORM WITH XML

SUPPORT [Online]. Available: http://www.uk.oracle.com/info/news/nov98xmi.html.

(August 7, 2000).

[7] Murray, G. (1999). The Portal is the Desktop. Framingham, MA: International Data

Corporation. This article is available from the Group Computing web site at

http://www.groupcomputing.com/Issues/1999/MayJune1999/mayjune1999.html.

[8] XML Query Language (XQL) Proposal [Online]. Available:

http://www.w3.org/Style/XSL/Group/1998/09/XQL-proposal.html. (August 7, 2000).

[9] XML-Data W3C Note 05 Jan 1998 [Online]. Available:

http://www.w3.org/TR/1998/NOTE-XML-data/. (August 7, 2000).

59

[10] Simple Object Access Protocol (SOAP) 1.1 W3C Note 08 May 2000 [Online].

Available: http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. (August 7, 2000).

[11] An object-oriented database is a system offering DBMS facilities in an object-

oriented programming environment. Data is stored as objects, and can be interpreted

using methods specified by its class. The relationship between similar objects is

preserved (inheritance) as are references between objects (Harrington, J. L. (2000).

Object-Oriented Database Design Clearly Explained. Ap Professional.)

[12] Stanek, W. R. (1998). Structuring Data with XML [Online]. Available:

http://www.zdnet.com/pcmag/pctech/content/17/10/tf1710.001.html. (August 7,

2000).

[13] Document Content Description for XML - Submission to the World Wide Web

Consortium 31 July 1998 [Online]. Available: http://www.w3.org/TR/NOTE-dcd.

[14] Schema for Object-Oriented XML 2.0. W3C Note 30 July 1999 [Online]. Available:

http://www.w3.org/TR/NOTE-SOX/.

[15] Document Definition Markup Language (DDML) Specification, Version 1.0 - W3C

Note, 19 January 1999 [Online]. Available: http://www.w3.org/TR/NOTE-ddml].

[16] XML Schema Part 1: Structures. W3C Working Draft 7 April 2000 [Online].

Available: http://www.w3.org/TR/xmlschema-1/.

[17] XML Schema Part 2: Datatypes. W3C Working Draft 07 April 2000 [Online].

Available: http://www.w3.org/TR/xmlschema-2/.

[18] Rein, L. (1999). The Quest For An XML Query Standard [Online]. Available:

http://www.xml.com/pub/1999/03/quest/index.html. (August 7, 2000).

[19] Robie, J. The Design of XQL [Online]. Available:

http://www.texcel.no/whitepapers/xql-design.html (August 7, 2000).

[20] Informix. (2000). Informix Internet Foundation.2000: The Internet Future Comes

Back to Informix [Online]. Available:

http://www.informix.com/informix/whitepapers/aberdeen/iif_aberdeen.htm. (August 8,

2000).

60

[21] IBM. (2000). DB2 Universal Database Version 7.1 [Online]. Available:

http://www-4.ibm.com/software/data/db2/udb/v7/beta/. (August 8, 2000).

[22] Microsoft Corporation. Microsoft SQL Server XML Technology Preview [Online].

Available: http://msdn.microsoft.com/workshop/xml/articles/xmlsql/sqlxml_prev.asp.

(August 8, 2000). Ricadela, A. (1999). Microsoft Outlines SQL Server 7 Upgrade Plans

[Online]. InformationWeek Online - Monday, December 13, 1999. Available:

http://www.informationweek.com/story/IWK19991213S0006. (August 8, 2000).

[23] Glascock, R. (2000). SQL Server 2000 Will RTM Next Week [Online]: Available:

http://www.techweb.com/wire/story/TWB20000727S0007. (August 8, 2000).

[24] Ressler, J. (2000). SQL Server Insider: Developer Q&A [Online]. Available:

http://microsoft.com/sql/techinfo/insiderwebfeatures2K.htm. (August 8, 2000).

[25] Trupin, J. (2000). SQL Server 2000: New XML Features Streamline Web-centric

App Development [Online]. Available:

http://msdn.microsoft.com/msdnmag/issues/0300/sql/sql.asp. (August 8, 2000).

[26] This is the case with Microsoft Internet Explorer 5.0’s XML Parser. It should be

noted that some Java parsers can process an XML document incrementally.

Nevertheless, this is still an issue when there are a large amount (e.g. thousands) of

upper-tier XML nodes/elements.

[27] Software AG. (2000). Why We Need XML Server Technology [Online]. Available:

http://www.softwareag.co.uk/xml/mail1.html (August 8, 2000).

[28] Software AG. (2000). About Tamino – The Power Database for the Internet

[Online]. Available: http://www.softwareag.com/tamino/product/strategy.htm. (August

8, 2000).

[29] dbXML.org. (2000). What is dbXML? [Online]. Available: core is a data

management system designed specifically for large collections of XML documents.

(August 8, 2000).

[30] DataChannel. (2000). DataChannelServer (DCS) 4.0 [Online]. Available:

http://www.datachannel.com/products/. (August 8, 2000).

61

[31] Compare to an object-oriented database like Tamino, where the structure of the

XML document would be mapped to the structure of the object database.

[32] IBM. (2000). DatabaseDom [Online]. Available:

http://www.alphaworks.ibm.com/tech/databasedom. (August 8, 2000).

[33] Sergeant, M. (2000). DBIx-XML_RDB-0.03 [Online]. Available:

http://theoryx5.uwinnipeg.ca/CPAN/data/DBIx-XML_RDB/XML_RDB.html. (August 8,

2000).

[34] XML Software Foundation. (2000). InterAccess [Online]. Available:

http://www.xmlsoft.com.au/iaccess.html. (August 8, 2000).

[35] Although all of the Java components needed by XSQL Servlet are available within

the Oracle8i installation, an external Java Virtual Machine (version 1.1.8) had to be

installed to successfully run XSQL Servlet. The Oracle Universal Installer installs

version 1.1.7 of the JDK (by default at C:\Program Files\Oracle\jre). Initially, this path

was used as the Java environment variable for XSQL Servlet. XSQL Servlet would run

using this environment variable, but it would not successfully connect to a database.

The solution was to separately install version 1.1.8, and then to modify the appropriate

values to reference this external JVM (installed by default at C:\jdk1.1.8).

62

REFERENCES

• Birbeck, M., Kay M., Livingstone, S., Mohr, S. F., Pinnock, J., Loesgen, B., Livingston,

S., Martin, D., Ozu, N., Seabourne, M., Baliles, D. (2000). Professional XML - 1st

edition. Birmingham, UK ; Chicago, US: Wrox Press Inc.

• Bourret, R. (1999). XML and Databases [Online]. Available:

http://www.informatik.tu-

darmstadt.de/DVS1/staff/bourret/xml/XMLAndDatabases.htm. (August 7, 2000).

• Bourret, R. (2000). XML-DBMS – Middleware for transferring Data between XML

Documents and Relational Databases [Online]. Available: http://www.informatik.tu-

darmstadt.de/DVS1/staff/bourret/xmldbms/xmldbms.htm. (undated).

• Chang, B., Scardina, M., Karun, K., Kiritzov, S., Macky, I., Novoselsky, A.,

Ramakrishnan, N. (2000). Oracle XML Handbook. Berkeley, California, U.S.: McGraw-

Hill.

• Date, C.J. (2000). An Introduction to Database Systems – Seventh Edition. New York

New York: Addison Wesley Longman.

• Finkelstein, C., Aiken, P., and Zachman, J. (1999). Building Corporate Portals with

XML (Enterprise Computing). Sydney, Australia: McGraw-Hill.

• Goldman, R., McHugh, J., Abiteboul, S., Quass, D., and Widom, J. Lore: A Database

Management System for Semistructured Data. SIGMOD Record, 26(3):54-66,

September 1997.

• Hackathron, Richard D. (1999). Web Farming for the Data Warehouse. San

Francisco, California: Morgan Kaufmann Publishers.

• Harold, E. R. (1999). XML Bible. Foster City, California: IDG Books Worldwide.

• Harold, E. R. (2000). The Advantages of XML for Database Integration [Online].

Available: http://metalab.unc.edu/xml/slides/sd2000west/xmlandjava/. (August 8,

63

2000).

• Henry, A. (1999). XML On Your Net [Online]. Available:

http://www.nwfusion.com/buzz99/buzzxml.html. (August 8, 2000).

• Ju, P. (1997). Databases on the Web – Designing and Programming for Network

Access. New York, New York: M&T Books.

• Kroenke, D. M. (2000). Database Processing: Fundamentals, Design, and

Implementation. Upper Saddle River, New Jersey: Prentice-Hall.

• Muench, S. (2000). Using XML and Relational Databases for Internet Applications

[Online]. Available:

http://technet.oracle.com/tech/xml/info/htdocs/relational/index.htm#ID795.

(August 8, 2000).

• Net.uniqueness. (1999). What is an XML Database? [Online]. Available:

http://www.uniquness.net/whitepaper.html. (August 8, 2000).

• Ogbuji, U. (1999). Practice XML [Online]. Available:

http://www.cnn.com/TECH/computing/9910/01/practical.xml.idg/index.html.

(August 8, 2000).

• Oracle Corporation. (1998). Oracle Technical White Paper: XML Support in Oracle8i

and Beyond [Online]. Available:

http://technet.oracle.com/tech/xml/info/htdocs/xml_twp.html (August 8, 2000).

• Oracle. (1999). Using XML in Oracle Database Applications [Online]. Available:

http://technet.oracle.com/tech/xml/info/index2.htm?Info&htdocs/otnwp/xml_custom

_presentation.htm. (August 8, 2000).

• Ramalho, J. (2000). Learn Oracle8i, Plano, Texas: Wordware Publishing.

• Robie J., Lapp J., and Schach D. XML Query Language (XQL), in Proceedings of QL

'98: The Query Languages Workshop [Online]. Available: http://www.w3.org/TandS/

64

QL/QL98/. (August 7, 2000).

• Simpson, J.E. (1999). Just XML. PTR, New Jersey: Prentice Hall.

• St. Laurent, S. (1999a). XML: A Primer - Second Edition. Foster City, California: M&T

Books, IDG Books Worldwide, Inc.

• St. Laurent, S. (1999b). Describing Your Data: DTDs and XML Schemas [Online].

Available: http://www.xml.com/pub/1999/12/dtd/. (August 7, 2000).

• The XML FAQ. (2000). Frequently Asked Questions about the Extensible Markup

Language [Online]. Available: http://www.ucc.ie/xml/. (August 7, 2000).

• World Wide Web Consortium [W3C]. (1997). XML Representation of a Relational

Database [Online]. Available: http://www.w3.org/XML/RDB.html. (August 7, 2000).

• W3C. (1998a). Extensible Markup Language (XML) 1.0 [Online]. Available:

http://www.w3.org/TR/REC-xml. (August 7, 2000).

• W3C. (1998b). Document Object Model (DOM) Level 1 Specification [Online].

Available: http://www.w3.org/TR/REC-DOM-Level-1. (August 7, 2000).

• W3C. (1999a). Namespaces in XML – W3C Recommendation 14 January, 1999

[Online]. Available: http://www.w3.org/TR/REC-xml-names. (August 7, 2000).

• W3C. (1999b). Associating Style Sheets with XML documents Version 1.0 - W3C

Recommendation 29 June, 1999 [Online]. Available:

http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/. (August 7, 2000).

• W3C. (1999c). XSL Transformations (XSLT) Version 1.0 – W3C Recommendation 16

November, 1999 [Online]. Available: http://www.w3.org/TR/1999/REC-xslt-

19991116. (August 7, 2000).

• W3C. (2000a). Extensible Stylesheet Language (XSL) Version 1.0 - W3C Working

Draft 27 March 2000 [Online]. Available: http://www.w3.org/TR/xsl/. (August 7,

65

2000).

• W3C. (2000b). XML Schema - W3C Working Draft [Online]. Available:

http://www.w3.org/TR/xmlschema-1/. (August 7, 2000).

• W3C. (2000c). Resource Description Framework (RDF) [Online]. Available:

http://www.w3.org/RDF/. (August 7, 2000).

• Widom, J. (1999). Data Management for XML - Research Directions. IEEE Data

Engineering Bulletin, Special Issue on XML, 22(3):44-52. (September 1999).

• Wiseth, K. (2000). Industry Standard

Introduction to XML [Online]. Available: http://www.oracle.com/oramag/oracle/00-

Jan/10ind.html. (August 8, 2000).

