Sentiment Analysis

Jaime Arguello INLS 613: Text Data Mining jarguell@email.unc.edu

Definitions

- Subjectivity analysis: detecting whether a span of text describes the author's internal state (e.g., opinions, evaluations, emotions, speculations) versus an objective fact
- Opinion mining: detecting whether a span of text expresses a positive/negative judgement
- Affect Detection: detecting whether a span of text conveys a particular emotion (e.g., anger, hope, disgust)

Applications

- Review summarization
- Recommendation systems
- Detecting "trolls" in social media
- Summarization of multiple viewpoints
- Text-based forecasting or "now-casting"
- eRulemaking

Challenges

Features

- Unigrams (presence vs. frequency)
- Higher-order n-grams (mixed results)
- Corpus frequency (Hapax legomena -- objective text is repeated)
- Part-of-speech ("love"--> love_NOUN)
- Position information ("good" --> good_END)
- Valence shifters ("don't like" --> NOT_like)
- Target oriented features ("long" --> BATTERY_LIFE_long)
- Genre-specific features ("scary" --> HORROR_scary)
- Dependency parse features (<u>http://nlp.stanford.edu:8080/parser/index.jsp</u>)

Please enter a sentence to be parsed:

Despite the average character development, this was a great movie.					
	/				
Language: English + Sample Sentence	Parse				

Your query

Despite the average character development, this was a great movie.

Tagging

```
Despite/IN the/DT average/JJ character/NN development/NN ,/, this/DT was/VBD a/DT great/JJ movie/NN ./.
```

Parse

```
(ROOT
  (S
   (PP (IN Despite)
      (NP (DT the) (JJ average) (NN character) (NN development)))
   (, ,)
   (NP (DT this))
   (VP (VBD was)
      (NP (DT a) (JJ great) (NN movie)))
   (. .)))
```

Universal dependencies

```
case(development-5, Despite-1)
det(development-5, the-2)
amod(development-5, average-3)
compound(development-5, character-4)
nmod(movie-11, development-5)
nsubj(movie-11, this-7)
cop(movie-11, was-8)
det(movie-11, a-9)
amod(movie-11, great-10)
root(ROOT-0, movie-11)
```

Please enter a sentence to be parsed:

The movie was not in any way terrible.	
	/
Language: English	Parse

Your query

The movie was not in any way terrible.

Tagging

The/DT movie/NN was/VBD not/RB in/IN any/DT way/NN terrible/JJ ./.

Parse

```
(ROOT
 (S
   (NP (DT The) (NN movie))
   (VP (VBD was)
      (ADVP (RB not)
        (PP (IN in)
            (NP (DT any) (NN way))))
   (ADJP (JJ terrible)))
   (. .)))
```

Universal dependencies

```
det(movie-2, The-1)
nsubj(terrible-8, movie-2)
cop(terrible-8, was-3)
neg(terrible-8, not-4)
case(way-7, in-5)
det(way-7, any-6)
nmod(not-4, way-7)
root(ROOT-0, terrible-8)
```

Pang and Lee, EMNLP 2002

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams))	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

	Proposed word lists	Accuracy	Ties
Human 1	positive: dazzling, brilliant, phenomenal, excellent, fantastic negative: suck, terrible, awful, unwatchable, hideous	58%	75%
Human 2	positive: gripping, mesmerizing, riveting, spectacular, cool, awesome, thrilling, badass, excellent, moving, exciting negative: bad, cliched, sucks, boring, stupid, slow	64%	39%

Approaches

- Classification
- Regression
- Building genre-specific classifiers
- Inferring term-polarity with seeds/conjunctions (and, but)
 - Elegant but over-priced; clever and informative
- Inferring labels heuristically (stars, emoticons)

- Self-training
- Domain adaptation

Domain Adaptation

- Challenges
 - Some features may not appear in the target domain
 - Some features may have the opposite polarity

Domain Adaptation

source domains target domain books kitchen appliances mobile phones music albums movies laptops restaurants

Related Tasks

- Detecting positive/negative judgement
- Predicting degree of positivity/negativity (regression)
- Extracting sentences that provide justification
- Extracting sentences that express comparison
- Predicting agreement/disagreement
- Viewpoint detection (pro vs. against)
- Detecting issue frames around debate