Experimentation

Jaime Arguello
INLS 613: Text Data Mining
jarguell@email.unc.edu

Outline

Cross-Validation

Significance tests

Training and Testing

Training and Testing

- Split the data into two sets.
- Find the parameter values that maximizes performance on the training set.
- Evaluate the system with that parameter value on the test set.

Cross-Validation

Cross-Validation

- Split the data into $\mathrm{N}=5$ folds

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

$\mathrm{F}=0.50$

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

$$
F=0.70
$$

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

$$
F=0.50
$$

Cross-Validation

- For each fold:
- Train a model on the union of the other folds
- Test on the holdout fold

Cross-Validation

- Average the performance across held-out folds

What should we set N to?

Outline

Cross-Validation

Significance tests

Comparing Systems

- Train and test both systems using 10fold cross validation
- Use the same folds for both systems
- Compare the difference in average performance across held-out folds

Fold	System A
1	0.2
2	0.3
3	0.1
4	0.4
5	1
6	0.8
7	0.3
8	0.1
9	0
10	0.9
Average	0.41
	Difference

System B
0.5
0.3
0.1
0.4 1
0.9
0.1
0.2
0.5
0.8
0.48
0.07

Significance Tests
 motivation

- Why would it be risky to conclude that System B is better System A?
- Put differently, what is it that we're trying to achieve?

Significance Tests motivation

- In theory: that the average performance of System B is greater than the average performance of System A for all data.
- However, we don't have all data. We have a sample
- And, this sample may favor one system vs. the other!

Significance Tests
 definition

- A significance test is a statistical tool that allows us to determine whether a difference in performance reflects a true pattern or just random chance

Significance Tests ingredients

- Test statistic: a measure used to judge the two systems (e.g., the difference between their average F-measure)
- Null hypothesis: no "true" difference between the two systems
- P-value: take the value of the observed test statistic and compute the probability of observing a value that large (or larger) under the null hypothesis

Significance Tests ingredients

- If the p-value is large, we cannot reject the null hypothesis
- That is, we cannot claim that one system is better than the other
- If the p-value is small ($p<0.05$), we can reject the null hypothesis
- That is, the observed test statistic is not due to random chance

Comparing Systems

- P-value: the probability

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fisher's Randomization Test

 procedure- Inputs: counter $=0, \mathrm{~N}=100,000$
- Repeat N times:

Step 1: for each fold, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

- Output: counter / N

Fisher's Randomization Test

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fisher's Randomization Test

Fold	System A	System B
1	$\mathbf{0 . 5}$	$\mathbf{0 . 2}$
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	$\mathbf{0 . 9}$	$\mathbf{0 . 8}$
7	0.3	0.1
8	0.1	0.2
9	$\mathbf{0 . 5}$	$\mathbf{0}$
10	0.9	0.8
Average	0.5	0.39
	Difference	-0.11
iteration $\mathbf{=}$	l counter $=\mathbf{0}$	

at least 0.07 ?

Fisher's Randomization Test

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	$\mathbf{0 . 1}$	$\mathbf{0 . 1}$
4	0.4	0.4
5	$\mathbf{1}$	$\mathbf{1}$
6	0.8	0.9
7	$\mathbf{0 . 1}$	$\mathbf{0 . 3}$
8	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$
9	0	0.5
10	$\mathbf{0 . 0 8}$	$\mathbf{0 . 9}$
Average	0.318	0.5
	Difference	0.182
iteration $=\mathbf{2} \quad$ counter $=\mathbf{1}$		

at least 0.07 ?

Fisher's Randomization Test

Fold	System A	System B	
1	$\mathbf{0 . 5}$	$\mathbf{0 . 2}$	
2	0.3	0.3	
3	$\mathbf{0 . 1}$	$\mathbf{0 . 1}$	
4	$\mathbf{0 . 4}$	$\mathbf{0 . 4}$	
5	1	1	
6	$\mathbf{0 . 9}$	$\mathbf{0 . 8}$	
7	0.3	0.1	
8	0.1	0.2	
9	$\mathbf{0 . 5}$	$\mathbf{0}$	
10	0.9	0.8	
Average	0.5	0.39	at least
	Difference	-0.11	$\mathbf{0 . 0 7 ?}$
iteration $=100,000$	counter $=25,678$	26	

Fisher's Randomization Test

 procedure- Inputs: counter $=0, \mathrm{~N}=100,000$
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

- Output: counter / N = $(25,678 / 100,00)=0.25678$

Fisher's Randomization Test

- Under the null hypothesis, the probability of observing a value of the test statistic of 0.07 or greater is about 0.26 .
- Because $p>0.05$, we cannot confidently say that the value of the test statistic is not due to random chance.
- A difference between the average F-measure values of 0.07 is not significant

Fisher's Randomization Test

 procedure- Inputs: counter $=0, \mathrm{~N}=100,000$
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment counter

- Output: counter / $\mathrm{N}=(25,678 / \mathrm{I} 00,00)=0.25678$

This is a one-tailed test $(B>A)$.
How can we modify it to be a two-tailed test ($B!=A$)

Fisher's Randomization Test

procedure

- P-value: the probability of observing a
difference in the absolute value equal to or greater than 0.07 under the null
hypothesis (i.e., the systems are actually equal).

System A System B

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Bootstrap-Shift Test motivation

- Our sample is a representative sample of all data

Bootstrap-Shift Test motivation

- Our sample is a representative sample of all data

Bootstrap-Shift Test motivation

- If we sample (with replacement) from our sample, we can generate a new representative sample of all data

Bootstrap-Shift Test procedure

- Inputs: Array $T=\{ \}, \mathrm{N}=100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute average of numbers in T
- Step 4: reduce every number in T by average
- Output: \% of numbers in T greater than or equal to the observed test statistic

Bootstrap-Shift Test procedure

- Inputs: Array T = \{ $\}, \mathrm{N}=100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute average of numbers in T
- Step 4: reduce every number in T by average
- Outpuit: \% of numbers in T greater than or equal to the observed test statistic

Bootstrap-Shift Test

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Bootstrap-Shift Test

Fold	System A	System B	sample
1	0.2	0.5	$\mathbf{0}$
2	0.3	0.3	$\mathbf{1}$
3	0.1	0.1	$\mathbf{2}$
4	0.4	0.4	$\mathbf{2}$
5	1	1	$\mathbf{0}$
6	0.8	0.9	$\mathbf{1}$
7	0.3	0.1	$\mathbf{1}$
8	0.1	0.2	$\mathbf{1}$
9	0	0.5	$\mathbf{2}$
10	0.9	0.8	$\mathbf{0}$

Bootstrap-Shift Test

Bootstrap-Shift Test

Fold	System A	System B	sample
1	0.2	0.5	$\mathbf{0}$
2	0.3	0.3	$\mathbf{0}$
3	0.1	0.1	$\mathbf{3}$
4	0.4	0.4	$\mathbf{2}$
5	1	1	$\mathbf{0}$
6	0.8	0.9	$\mathbf{1}$
7	0.3	0.1	$\mathbf{1}$
8	0.1	0.2	$\mathbf{1}$
9	0	0.5	$\mathbf{1}$
10	0.9	0.8	$\mathbf{1}$

$$
T=\{0.10\}
$$

iteration $=2$

Bootstrap-Shift Test

Fold	System A		System B
3	0.1	0.1	
3	0.1	0.1	
3	0.1	0.1	
4	0.4	0.4	
4	0.4	0.4	
6	0.8	0.9	
7	0.3	0.1	
8	0.1	0.2	
9	0	0.5	$\mathrm{~T}=\{\mathbf{0 . 1 0}$,
10	0.9	0.8	$\mathbf{0 . 0 4 \}}$
Average	0.32	0.36	
	Difference	$\mathbf{0 . 0 4}$	

Bootstrap-Shift Test

Fold	System A	System B
1	0.2	0.5
1	0.2	0.5
4	0.4	0.4
4	0.4	0.4
4	0.4	0.4
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
8	0.1	0.2
10	0.9	0.8
Average	0.38	0.44
	Difference	$\mathbf{0 . 0 6}$
	iteration $=\mathbf{1 0 0 , 0 0 0}$	

$0.06\}$

Bootstrap-Shift Test procedure

- Inpuits: Array $T=\{ \}, N=100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute average of numbers in T
- Step 4: reduce every number in T by average
- Output: \% of numbers in T' greater than or equal to the observed test statistic

Bootstrap-Shift Test procedure

- For the purpose of this example, let's assume $\mathrm{N}=10$.

$$
\begin{aligned}
& \mathrm{T}=\{0.10, \\
& 0.04, \\
& 0.21, \\
& 0.20, \\
& 0.13, \\
& 0.09, \\
& 0.22, \\
& 0.07, \quad \text { Step } 3 \\
& 0.03, \\
& 0.11\}
\end{aligned}
$$

$$
\begin{aligned}
& T^{\prime}=\{-0.02 \text {, } \\
& \text {-0.08, } \\
& \text { 0.09, } \\
& \text { 0.08, } \\
& \text { 0.01, } \\
& \text {-0.03, } \\
& 0.10 \text {, } \\
& \text {-0.09, } \\
& \text {-0.01\} }
\end{aligned}
$$

Average $=\mathbf{0 . 1 2}$

Bootstrap-Shift Test procedure

- Inputs: Array $T=\{ \}, \mathrm{N}=100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to T

- Step 3: compute average of numbers in T
- Step 4: reduce every number in T by average
- Output: \% of numbers in T' greater than or equal to the observed test statistic

Bootstrap-Shift Test procedure

- Output: $(3 / 10)=\mathbf{0 . 3 0}$

$$
\begin{aligned}
& \mathrm{T}=\{0.10, \\
& 0.04, \\
& 0.21, \\
& 0.20, \\
& 0.13, \\
& 0.09, \\
& 0.22, \\
& \\
& 0.07, \quad \text { Step } 3 \\
& 0.03, \\
& 0.11\}
\end{aligned}
$$

$$
\begin{aligned}
\text { T' } & \{-0.02, \\
& -0.08, \\
& 0.09, \\
& 0.08, \\
& 0.01, \\
& -0.03, \\
& 0.10, \\
\text { Step } 4 & -0.05, \\
& -0.09 \\
& -0.01\}
\end{aligned}
$$

Average $=0.12$

Bootstrap-Shift Test procedure

- Output: $(3 / 10)=\mathbf{0 . 3 0}$

$$
\begin{aligned}
& \mathrm{T}=\{0.10, \\
& \text { 0.04, } \\
& \text { 0.21, } \\
& \text { 0.20, } \\
& \text { 0.13, } \\
& \text { 0.09, } \\
& \text { 0.22, } \\
& \text { 0.07, Step } 3 \\
& \text { 0.03, } \\
& 0.11\} \\
& \begin{array}{l}
\text { This is a one-tailed } \\
\text { test. How can we } \\
\text { modify it to be a }
\end{array} \\
& \text { two-tailed test? } \\
& T^{\prime}=\{-0.02, \\
& \text {-0.08, } \\
& \text { 0.09, } \\
& \text { 0.08, } \\
& \text { 0.01, } \\
& \text {-0.03, } \\
& \text { 0.10, } \\
& \text {-0.05, } \\
& \text {-0.09, } \\
& \text {-0.01\} } \\
& \text { Average }=\mathbf{0 . 1 2}
\end{aligned}
$$

Significance Tests

summary

- Significance tests help us determine whether the outcome of an experiment signals a "true" trend
- The null hypothesis is that the observed outcome is due to random chance (sample bias, error, etc.)
- There are many types of tests
- Parametric tests: assume a particular distribution for the test statistic under the null hypothesis
- Non-parametric tests: make no assumptions about the test statistic distribution under the null hypothesis
- The randomization and bootstrap-shift tests make no assumptions, are robust, and easy to understand

