Linear Classifiers

Jaime Arguello
INLS 613: Text Data Mining
jarguell@email.unc.edu

Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

Philosophical Questions

- What would you do if ...
- What does this have to do with linear classifiers?

Functions

Derivatives

Derivatives

Derivatives

Derivatives

Derivatives: What are they good for?

- The derivative of $f(x)$ outputs the slope of $f(x)$ for a particular value of x
- A point of which the slope is zero is a point at which $f(x)$ is at its highest or lowest value.
- What does this have to do with machine learning?

Derivatives

Computation Graphs

$$
y=3(a+b c)
$$

Computation Graphs

$$
y=3(a+b c)
$$

Derivatives: Chain Rule

$$
y=3(a+b c)
$$

$$
\frac{d y}{d c}=\frac{d v}{d c} \times \frac{d u}{d v} \times \frac{d y}{d u}
$$

Derivatives: Chain Rule

$$
\begin{gathered}
y=3(a+b c) \\
\frac{d y}{d c}=b \times 1 \times 3=3 b
\end{gathered}
$$

Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

Linear Regression

$$
y=w x+b
$$

Linear Regression

Linear Regression

Linear Regression: Training
 $$
y=w x+b
$$

- Input: set of m training examples (x, y)
- Find the value of w and b that minimize the error:

$$
\sum_{i=1}^{m}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

Linear Regression: Training

$$
y=w x+b
$$

- Find the value of w and b that minimize the error:

$$
\begin{aligned}
& \sum_{i=1}^{m}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
& =1 \\
& =1 \\
& \left.=1 y^{(i)}-w x^{(i)}-b\right)^{2}
\end{aligned}
$$

Linear Regression: Training
 $$
y=w x+b
$$

- Find the value of w and b that minimize the error:

$$
\sum_{i=1}^{m}\left(y^{(i)}-w x^{(i)}-b\right)^{2}
$$

- Take the derivative with respect to w, set it equal to 0 , and solve for w.
- Take the derivative with respect to b, set it equal to 0 , and solve for b.

Linear Regression: Training

- Find the value of w and b that minimize the error:

$$
w=\frac{\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)^{2}}
$$

$$
b=\bar{y}-w \bar{x}
$$

Linear Regression: Training

- Find the value of w and b that minimize the error:

$$
\begin{aligned}
& w=\frac{\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum_{i=1}^{m}\left(x^{(i)}-\bar{x}\right)^{2}} \\
& \text { Always } \\
& \text { positive! } \quad b=\bar{y}-w \bar{x} \quad \text { It depends! }
\end{aligned}
$$

Linear Regression: Prediction

Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

Multiple Linear Regression

Multiple Linear Regression

Size (feet)	No. of bedrooms	No. of floors	Age (years)	Price $(x \$ 1000)$
2,350	5	2	45	500
1,600	3	2	20	450
2,000	3	2	30	250
854	2	1	10	200
560	1	1	30	180

Multiple Linear Regression: Training

- Given:

$$
\left\{\left(x^{(1)}, y^{(1)}\right),\left(x^{(2)}, y^{(2)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}
$$

- We want:

$$
\hat{y}^{(i)} \approx y^{(i)}
$$

Multiple Linear Regression: Training

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

Multiple Linear Regression: Training

- Cost Function: the discrepancy between the predicted and actual output values for all training instances

$$
\begin{gathered}
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
\mathcal{J}(w, b)=\frac{1}{m} \sum_{i=1}^{m}\left(\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}\right)
\end{gathered}
$$

Derivatives

Gradient Descent: Intuition

Gradient Descent: Intuition

Multiple Linear Regression

Size (feet)	No. of bedrooms	No. of floors	Age (years)	Price $(x \$ 1000)$
2,350	5	2	45	500
1,600	3	2	20	450
2,000	3	2	30	250
854	2	1	10	200
560	1	1	30	180

Multiple Linear Regression

Gradient Descent

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

- Let's see what the slope of the loss function is with respect to parameter b !
- Note: this will only consider one training example!

Gradient Descent

- Derivative of the loss function with respect to b

$$
\begin{gathered}
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\sum_{j=1}^{n}\left(w_{j} x_{j}^{(i)}\right)-b\right)^{2} \\
\frac{d}{d b} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)}-\hat{y}^{(i)}\right) \\
\frac{d}{d b} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\hat{y}^{(i)}-y^{(i)}
\end{gathered}
$$

Gradient Descent

$$
\frac{d}{d b} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\hat{y}^{(i)}-y^{(i)}
$$

$\left.\begin{array}{|c|c|c|}\hline \text { Scenario } & \hat{y}^{(i)}-y^{(i)} & \text { Action! } \\ \hline \hat{y}^{(i)}>y^{(i)} & + & \begin{array}{c}\text { Decrease } \\ \text { (nudge left) }\end{array} \\ \hline \hat{y}^{(i)}<y^{(i)} & -- & \begin{array}{c}\text { Increase } \\ \text { (nudge right) }\end{array} \\ \hline \hat{y}^{(i)} \approx y^{(i)} & 0 & \text { Do nothing! } \\ \qquad\end{array}\right\}$

Gradient Descent

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

- Let's see what the slope of the loss function is with respect to parameter w_{j} !
- Note: this will only consider one training example!

Gradient Descent

- Derivative of the loss function with respect to w_{j}

$$
\begin{gathered}
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2} \\
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\sum_{j=1}^{n}\left(w_{j} x_{j}^{(i)}\right)-b\right)^{2} \\
\frac{d}{d w_{j}} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-x_{j}^{(i)}\left(y^{(i)}-\hat{y}^{(i)}\right) \\
\frac{d}{d w_{j}} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}
\end{gathered}
$$

Gradient Descent
 $$
\frac{d}{d w_{j}} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}
$$

Scenario	$\hat{y}^{(i)}-y^{(i)}$	Action!
$\hat{y}^{(i)}>y^{(i)}$	+	Go in the opposite direction as $x_{j}^{(i)}$
$\hat{y}^{(i)}<y^{(i)}$	--	Go in the same direction as $x_{j}^{(i)}$
$\hat{y}^{(i)} \approx y^{(i)}$	0	Do nothing!

$$
y=\sum_{j=1}^{n}\left(w_{j} x_{j}\right)+b
$$

Gradient Descent

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\frac{1}{2}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}
$$

- Given one training example, we can take derivatives with respect to each parameter to see what direction we should be going to minimize the loss function.

Gradient Descent

- Repeat many times (or until convergence):

$$
\begin{gathered}
b \leftarrow b-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \\
w_{j} \leftarrow w_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}^{(i)}\right)
\end{gathered}
$$

Gradient Descent

- Repeat many times (or until convergence):

$$
b \leftarrow b-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right)
$$

- If we are overshooting the target, reduce b
- If we are undershooting the target, increase b
- Otherwise, do nothing

Gradient Descent

- Repeat many times (or until convergence):

$$
w_{j} \leftarrow w_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}^{(i)}\right)
$$

- If we are overshooting the target, reduce w_{j} proportional to the value of x_{j}
- If we are undershooting the target, increase w_{j} proportional to the value of x_{j}
- Otherwise, do nothing

Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

Logistic Regression

- Linear regression: predict y given x
- Multiple linear regression: predict y given x_1, x_2,
..., x_n

Logistic Regression

- Logistic Regression: predict $P\left(y=1 \mid x _1, x _2, \ldots, x _n\right)$
- We can use logistic regression to do binary classification.

Logistic Regression

Size (feet)	No. of bedrooms	No. of floors	Age (years)	Price $(x \$ 1000)$	Sell
2,350	5	2	45	500	1
1,600	3	2	20	450	0
2,000	3	2	30	250	0
854	2	1	10	200	1
560	1	1	30	180	0

Logistic Regression

Logistic Regression

$$
\xrightarrow{x_{2}} x_{3} \longrightarrow f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \longrightarrow P(y=1 \mid x)
$$

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

$$
z=\sum_{j=1}^{n}\left(w_{j} x_{j}\right)+b
$$

Logistic Regression

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

Logistic Regression

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\begin{aligned}
z & =\sum_{j=1}^{n}\left(w_{j} x_{j}\right)+b \\
\hat{y} & =\sigma(z)=\frac{1}{1+e^{-z}}
\end{aligned}
$$

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right)
$$

Logistic Regression

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right)
$$

- If the true value is 1 , we want the predicted value to be high.
- Remember: $\log (1)=0$

Logistic Regression

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right)
$$

- If the true value is 0 , we want the predicted value to be low.
- Remember: $\log (1)=0$

Logistic Regression

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\begin{gathered}
z=\sum_{j=1}^{n}\left(w_{j} x_{j}\right)+b \\
\hat{y}=\sigma(z)=\frac{1}{1+e^{-z}} \\
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right) \\
\frac{d}{d b} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\hat{y}^{(i)}-y^{(i)}
\end{gathered}
$$

Logistic Regression

- Loss Function: the discrepancy between the predicted and actual output values for a single training instance

$$
\begin{gathered}
z=\sum_{j=1}^{n}\left(w_{j} x_{j}\right)+b \\
\hat{y}=\sigma(z)=\frac{1}{1+e^{-z}} \\
\mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=-\left(y^{(i)} \log \hat{y}^{(i)}+\left(1-y^{(i)}\right) \log \left(1-\hat{y}^{(i)}\right)\right) \\
\frac{d}{d w_{j}} \mathcal{L}\left(y^{(i)}, \hat{y}^{(i)}\right)=\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}
\end{gathered}
$$

Logistic Regression:

Gradient Descent

- Repeat many times (or until convergence):

$$
\begin{gathered}
b \leftarrow b-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \\
w_{j} \leftarrow w_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}^{(i)}\right)
\end{gathered}
$$

Logistic Regression:

Gradient Descent

- Repeat many times (or until convergence):

$$
b \leftarrow b-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right)
$$

- If we are overshooting the target, reduce b
- If we are undershooting the target, increase b
- Otherwise, do nothing

Logistic Regression:

Gradient Descent

- Repeat many times (or until convergence):

$$
w_{j} \leftarrow w_{j}-\alpha \frac{1}{m} \sum_{i=1}^{m}\left(\left(\hat{y}^{(i)}-y^{(i)}\right) x_{j}^{(i)}\right)
$$

- If we are overshooting the target, reduce w_{j} proportional to the value of x_{j}
- If we are undershooting the target, increase w_{j} proportional to the value of x_{j}
- Otherwise, do nothing

Overview

- Philosophical questions
- Derivatives: What are they good for?
- Linear regression
- Multiple linear regression
- Logistic regression

The Big Picture!

- Linear regression, multiple linear regression and logistic regression are examples of linear models
- Internally, linear models output a prediction based on a weighted combination of input features
- Features that are positively correlated with the target output get a positive weight
- Features that are negatively correlated with the target output get a negative weight
- Features that are uncorrelated with the target output get a zero weight

