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Concepts from Domingo’s Paper

1. Representation + Parameter Optimization + Evaluation 

2. Bias/Variance Trade-off + Overfitting
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• Objective: developing and evaluating computer 
programs that automatically detect a particular concept 
in natural language text

Predictive Analysis of Text
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Predictive Analysis 
basic ingredients

1. Training data: a set of positive and negative examples of 
the concept we want to automatically recognize 

2. Representation: a set of features that we believe are 
useful in recognizing the desired concept 

3. Learning algorithm: a computer program that uses the 
training data to learn a predictive model of the concept
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Predictive Analysis 
basic ingredients

4. Model: a function that describes a predictive relationship 
between feature values and the presence of the concept 

5. Test data: a set of previously unseen examples used to 
estimate the model’s effectiveness 

6. Performance metrics: a set of statistics used to measure 
the predictive effectiveness of the model
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Predictive Analysis 
training and testing

machine 
learning 

algorithm
model

labeled examples

new, unlabeled 
examples

model

predictions

training

testing
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color size # sides equal sides ... label

red big 3 no ... yes

green big 3 yes ... yes

blue small inf yes ... no

blue small 4 yes ... no
.... .... .... .... .... ....

red big 3 yes ... yes

Predictive Analysis 
concept, instances, and features

conceptfeatures

in
st

an
ce

s
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Predictive Analysis 
training and testing

machine 
learning 

algorithm
model

labeled examples

new, unlabeled 
examples

model

predictions

training

testing

color size sides equal 
sides ... label

red big 3 no ... yes

green big 3 yes ... yes

blue small inf yes ... no

blue small 4 yes ... no
.... .... .... .... .... ....

red big 3 yes ... yes

color size sides equal 
sides ... label

red big 3 no ... ???

green big 3 yes ... ???

blue small inf yes ... ???

blue small 4 yes ... ???
.... .... .... .... .... ???

red big 3 yes ... ???

color size sides equal 
sides ... label

red big 3 no ... yes

green big 3 yes ... yes

blue small inf yes ... no

blue small 4 yes ... no
.... .... .... .... .... ....

red big 3 yes ... yes
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Predictive Analysis 
questions

• Is a particular concept appropriate for predictive 
analysis? 

• What should the unit of analysis be? 

• How should I divide the data into training and test sets? 

• What is a good feature representation for this task? 

• What type of learning algorithm should I use?
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• Learning algorithms can recognize some concepts better 
than others 

• What are some properties of concepts that are easier to 
recognize?

Predictive Analysis 
concepts
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• Option 1: can a human recognize the concept? 

Predictive Analysis 
concepts
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• Option 1: can a human recognize the concept? 

• Option 2: can two or more humans recognize the 
concept independently and do they agree?

Predictive Analysis 
concepts
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• Option 1: can a human recognize the concept? 

• Option 2: can two or more humans recognize the 
concept independently and do they agree? 

• Option 2 is better. 

• In fact, models are sometimes evaluated as an 
independent assessor 

• How does the model’s performance compare to the 
performance of one assessor with respect to another? 

‣ One assessor produces the “ground truth” and the 
other produces the “predictions”

Predictive Analysis 
concepts
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Predictive Analysis 
measures agreement: percent agreement

yes no
yes A B
no C D

• Percent agreement: percentage of instances for which 
both assessors agree that the concept occurs or does not 
occur

(? + ?)
(? + ? + ? + ?)
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yes no
yes A B
no C D

• Percent agreement: percentage of instances for which 
both assessors agree that the concept occurs or does not 
occur

(A + D)
(A + B + C + D)

Predictive Analysis 
measures agreement: percent agreement
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• Percent agreement: percentage of instances for which 
both assessors agree that the concept occurs or does not 
occur

Predictive Analysis 
measures agreement: percent agreement

yes no
yes 5 5 10
no 15 75 90

20 80

% agreement = ???
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• Percent agreement: percentage of instances for which 
both assessors agree that the concept occurs or does not 
occur

Predictive Analysis 
measures agreement: percent agreement

yes no
yes 5 5 10
no 15 75 90

20 80

% agreement = (5 + 75) / 100 = 80%
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• Problem: percent agreement does not account for 
agreement due to random chance. 

• How can we compute the expected agreement due to 
random chance? 

• Option 1: assume unbiased assessors 

• Option 2: assume biased assessors

Predictive Analysis 
measures agreement: percent agreement
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• Option 1: unbiased assessors

Predictive Analysis 
kappa agreement: chance-corrected % agreement

yes no
yes ?? ?? 50
no ?? ?? 50

50 50
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• Option 1: unbiased assessors

Predictive Analysis 
kappa agreement: chance-corrected % agreement

yes no
yes 25 25 50
no 25 25 50

50 50
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• Option 1: unbiased assessors

Predictive Analysis 
kappa agreement: chance-corrected % agreement

yes no
yes 25 25 50
no 25 25 50

50 50

random chance % agreement = ???
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• Option 1: unbiased assessors

Predictive Analysis 
kappa agreement: chance-corrected % agreement

yes no
yes 25 25 50
no 25 25 50

50 50

random chance % agreement = (25 + 25)/100 
= 50%
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Predictive Analysis 
kappa agreement: chance-corrected % agreement

• Kappa agreement: percent agreement after correcting for 
the expected agreement due to random chance

K =
P(a)� P(e)

1 � P(e)

• P(a) = percent of observed agreement

• P(e) = percent of agreement due to random chance
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yes no
yes 5 5 10
no 15 75 90

20 80

Predictive Analysis 
kappa agreement: chance-corrected % agreement

• Kappa agreement: percent agreement after correcting for 
the expected agreement due to unbiased chance

P(a) = 5+75
100 = 0.80

yes no
yes 25 25 50
no 25 25 50

50 50

P(e) = 25+25
100 = 0.50

K = P(a)�P(e)
1�P(e) = 0.80�0.50

1�0.50 = 0.60
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• Option 2: biased assessors

Predictive Analysis 
kappa agreement: chance-corrected % agreement

yes no
yes 5 5 10
no 15 75 90

20 80

biased chance % agreement = ???
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yes no
yes 5 5 10
no 15 75 90

20 80

Predictive Analysis 
kappa agreement: chance-corrected % agreement

• Kappa agreement: percent agreement after correcting for 
the expected agreement due to biased chance

P(a) = 5+75
100 = 0.80

K = P(a)�P(e)
1�P(e) = 0.80�0.74

1�0.74 = 0.23

P(e) =
⇣

10
100 ⇥ 20

100

⌘
+

⇣
90

100 ⇥ 80
100

⌘
= 0.74
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• INPUT: unlabeled data, annotators, coding manual
• OUTPUT: labeled data

1. using the latest coding manual, have all annotators 
label some previously unseen portion of the data 
(~10%)

2. measure inter-annotator agreement (Kappa)
3. IF agreement < X, THEN:
‣ refine coding manual using disagreements to 

resolve inconsistencies and clarify definitions
‣ return to 1

• ELSE
‣ have annotators label the remainder of the data 

Predictive Analysis 
data annotation process
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• What is good (Kappa) agreement? 

• It depends on who you ask 

• According to Landis and Koch, 1977: 

‣ 0.81 - 1.00: almost perfect 

‣ 0.61 - 0.70: substantial 

‣ 0.41 - 0.60: moderate 

‣ 0.21 - 0.40: fair 

‣ 0.00 - 0.20: slight 

‣ < 0.00: no agreement

Predictive Analysis 
data annotation process
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Predictive Analysis 
questions

• Is a particular concept appropriate for predictive 
analysis? 

• What should the unit of analysis be? 

• How should I divide the data into training and test sets? 

• What is a good feature representation for this task? 

• What type of learning algorithm should I use?
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• For many text-mining applications, turning the data into 
instances for training and testing is fairly straightforward 

• Easy case: instances are self-contained, independent units 
of analysis 

‣ topic categorization: instances = documents 

‣ opinion mining: instances = product reviews 

‣ bias detection: instances = political blog posts 

‣ emotion detection: instances = support group posts

Predictive Analysis 
turning data into (training and test) instances



31

w_1 w_2 w_3 ... w_n label

1 1 0 ... 0 health

0 0 0 ... 0 other

0 0 0 ... 0 other

0 1 0 ... 1 other
.... .... .... ... 0 ....

1 0 0 ... 1 health

conceptfeatures

in
st

an
ce

s
Topic Categorization 

predicting health-related documents
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w_1 w_2 w_3 ... w_n label

1 1 0 ... 0 positive

0 0 0 ... 0 negative

0 0 0 ... 0 negative

0 1 0 ... 1 negative
.... .... .... ... 0 ....

1 0 0 ... 1 positive

conceptfeatures

in
st

an
ce

s
Opinion Mining 

predicting positive/negative movie reviews
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w_1 w_2 w_3 ... w_n label

1 1 0 ... 0 liberal

0 0 0 ... 0 conservative

0 0 0 ... 0 conservative

0 1 0 ... 1 conservative
.... .... .... ... 0 ....

1 0 0 ... 1 liberal

conceptfeatures

in
st

an
ce

s
Bias Detection 

predicting liberal/conservative blog posts
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• A not-so-easy case: relational data 

• The concept to be learned is a relation between sets of 
objects 

• May require features that characterize properties of the set 

• May require ML algorithms that do not make independent 
predictions

Predictive Analysis 
turning data into (training and test) instances
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• Example of relational data in text-mining: 

‣ topic segmentation: segmenting discourse into topically 
coherent chunks

Predictive Analysis 
turning data into (training and test) instances
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Predictive Analysis 
topic segmentation example

A

A

A

A

A

A

A

B

B

B

B

B

B
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Predictive Analysis 
topic segmentation example: instances

A

A

A

A

A

A

A

B

B

B

B

B

B
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Predictive Analysis 
topic segmentation example: independent instances?

A

A

A

A

A

A

A

B

B

B

B

B

B

split
split
split
split
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Predictive Analysis 
topic segmentation example: independent instances?

A

A

A

A

A

A

A

B

B

B

B

B

B

split

split

split

split
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• Question: requests information about the course content 

• Answer: contributes information in response to a question 

• Issue: expresses a problem with the course management 

• Issue Resolution: attempts to resolve a previously raised issue 

• Positive Ack: positive sentiment about a previous post 

• Negative Ack: negative sentiment about a previous post 

• Other: serves a different purpose

Predictive Analysis 
discourse analysis in MOOCs: independent instances?
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• There are learning algorithms that incorporate relational 
constraints between predictions 

• However, they are beyond the scope of this class 

• We’ll be covering algorithms that make independent 
predictions on instances 

• That said, many algorithms output prediction confidence 
values 

• Heuristics can be used to favor certain types of joint 
outcomes more than others

Predictive Analysis 
turning data into (training and test) instances
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Predictive Analysis 
questions



43

• We want our model to “learn” to recognize a concept 

• So, what does it mean to learn?

Predictive Analysis 
training and test data
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• The machine learning definition of “learning:” 

A machine “learns” with respect to a particular task T,  
performance metric P, and experience E, if the system  
improves its performance P at task T (on new data) 
following experience E. -- Tom Mitchell 

Predictive Analysis 
training and test data
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• We want our model to improve its generalization 
performance!   

• That is, its performance on previously unseen data! 

• Generalize: to derive or induce a general conception or 
principle from particulars. -- Merriam-Webster 

• In order to test generalization performance, the training 
and test data cannot be the same. 

• Why?

Predictive Analysis 
training and test data
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Training data + Representation 
what could possibly go wrong?
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• While we don’t want to test on training data, models 
usually perform the best when the training and test set 
are derived from the same “probability distribution”. 

• What does that mean?

Predictive Analysis 
training and test data
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Predictive Analysis 
training and test data

Data

positive instances
negative instances

Test DataTraining Data

? ?
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Predictive Analysis 
training and test data

Data

positive instances
negative instances

Test DataTraining Data

• Is this a good partitioning?  Why or why not?
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Predictive Analysis 
training and test data

Data

positive instances
negative instances

Test DataTraining Data

Random
Sample

Random
Sample
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Predictive Analysis 
training and test data

Data

positive instances
negative instances

Test DataTraining Data

• Usually, random sampling should produce comparable 
(but not equal) data for training and testing
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• Models usually perform the best when the training and 
test set have: 

‣ a similar proportion of positive and negative 
examples 

‣ a similar co-occurrence of feature-values and each 
target class value

Predictive Analysis 
training and test data
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Predictive Analysis 
training and test data

• Caution: in some situations, partitioning the data 
randomly might inflate performance in an unrealistic 
way! 

• How the data is split into training and test sets 
determines what we can claim about generalization 
performance 

• The appropriate split between training and test sets is 
usually determined on a case-by-case basis
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• Suppose we want to train an email spam classifier 

• Obviously, we want it to generalize to new emails (i.e., 
not in the training set) 

• But, what are some other “things” we might want to 
classifier to generalize beyond?

Predictive Analysis 
Email Span Detection
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• Spam detection: should the training and test sets contain 
email messages from the same sender, same recipient, 
and/or same timeframe? 

• Topic segmentation: should the training and test sets 
contain potential boundaries from the same discourse? 

• Opinion mining for movie reviews: should the training 
and test sets contain reviews for the same movie? 

• Sentiment analysis: should the training and test sets 
contain blog posts from the same discussion thread?

Predictive Analysis 
discussion
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Predictive Analysis 
questions

• Is a particular concept appropriate for predictive 
analysis? 

• What should the unit of analysis be? 

• How should I divide the data into training and test sets? 

• What is a good feature representation for this task? 

• What type of learning algorithm should I use?
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• Linear classifiers 

• Decision tree classifiers 

• Instance-based classifiers

Predictive Analysis 
three types of classifiers
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• All types of classifiers learn to make predictions based 
on the input feature values 

• However, different types of classifiers combine the input 
feature values in different ways 

• Chapter 3 in the book refers to a trained model as 
knowledge representation

Predictive Analysis 
three types of classifiers
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Predictive Analysis 
linear classifiers: perceptron algorithm

y =

⇢
1 if w0 + Ân

j=1 wjxj > 0
0 otherwise
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Predictive Analysis 
linear classifiers: perceptron algorithm

y =

⇢
1 if w0 + Ân

j=1 wjxj > 0
0 otherwise

parameters learned by the model
predicted value (e.g., 1 = positive, 0 = negative)
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f_1 f_2 f_3

0.5 1 0.2

model weightstest instance
w_0 w_1 w_2 w_3

2 -5 2 1

output = 2 + (0.50 x -5) + (1.0 x 2) + (0.2 x 1)

output = 1.7

output prediction = positive

Predictive Analysis 
linear classifiers: perceptron algorithm
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f_1 f_2 f_3

0.5 1 0.2

model weightstest instance
w_0 w_1 w_2 w_3

2 -5 2 1

output = 2 + (0.50 x -5) + (1.0 x 2) + (0.2 x 1)

output = 1.7

output prediction = positive

Predictive Analysis 
linear classifiers: perceptron algorithm

According to this 
model, f_1 has an  

inverse relation with 
“positive”
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f_1 f_2 f_3

0.5 1 0.2

model weightstest instance
w_0 w_1 w_2 w_3

2 -5 2 1

output = 2 + (0.50 x -5) + (1.0 x 2) + (0.2 x 1)

output = 1.7

output prediction = positive

Predictive Analysis 
linear classifiers: perceptron algorithm

According to this 
model, f_2 has a  

positive relation with 
“positive”
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f_1 f_2 f_3

0.5 1 0.2

model weightstest instance
w_0 w_1 w_2 w_3

2 -5 2 1

output = 2 + (0.50 x -5) + (1.0 x 2) + (0.2 x 1)

output = 1.7

output prediction = positive

Predictive Analysis 
linear classifiers: perceptron algorithm

According to this 
model, f_3 has a  

positive, but weaker, 
relation with “positive”



65

Predictive Analysis 
linear classifiers: perceptron algorithm

(two-feature example borrowed from Witten et al. textbook)
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Predictive Analysis 
linear classifiers: perceptron algorithm

(source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png)

http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png
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Predictive Analysis 
linear classifiers: perceptron algorithm

x2

x1
• Would a linear classifier do well on positive (black) and 

negative (white) data that looks like this?

0.5 1.0

0.5

1.0
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Predictive Analysis 
decision tree classifiers

x2

x1
• Draw a decision tree that would perform perfectly on 

this training data!

0.5 1.0

0.5

1.0
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Predictive Analysis 
instance-based classifiers

x2

x1
• predict the class associated with the most similar 

training examples

0.5 1.0

0.5

1.0

?
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Predictive Analysis 
instance-based classifiers

x2

x1
• predict the class associated with the most similar 

training examples

0.5 1.0

0.5

1.0

?
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• Assumption: instances with similar feature values should 
have a similar label 

• Given a test instance, predict the label associated with 
its nearest neighbors 

• There are many different similarity metrics for 
computing distance between training/test instances 

• There are many ways of combining labels from multiple 
training instances

Predictive Analysis 
instance-based classifiers
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• Is a particular concept appropriate for predictive 
analysis? 

• What should the unit of analysis be? 

• How should I divide the data into training and test sets? 

• What is a good feature representation for this task? 

• What type of learning algorithm should I use?

Predictive Analysis 
questions


