Experimentation

Jaime Arguello INLS 613: Text Data Mining jarguell@email.unc.edu

Outline

Parameter Tuning Cross-Validation Significance tests

Evaluation

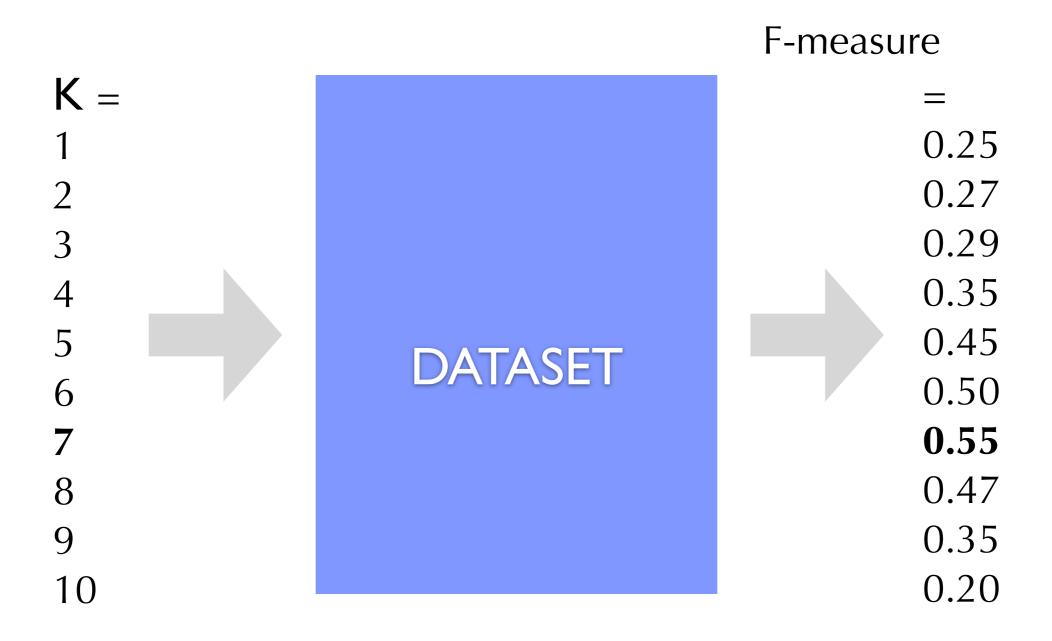
- The goal of evaluation is to determine a model's performance on previously unseen data
 - Parameter-tuning
 - Comparing between alternative approaches
 - Feature-ablation studies

Parameter Tuning motivation

- Supervised machine learning algorithms have lots of moving parts
- We can think of these parameters as "knobs" that need to be tweaked or tuned
- The goal is to set these parameter values such that we maximize performance
- We need to do this for both systems, not just the one we want to win!
- Can you think of some example parameters?

- K-nearest Neighbor
 - Compute the similarity between a previously unseen instance and all the instances in the training set
 - Assign the majority class associated with its K nearest neighbors
- Parameter K determines the number of training set instances that are used in the voting
- Goals:
 - How do we set K?
 - What is the expected performance of the system with a good value of K?

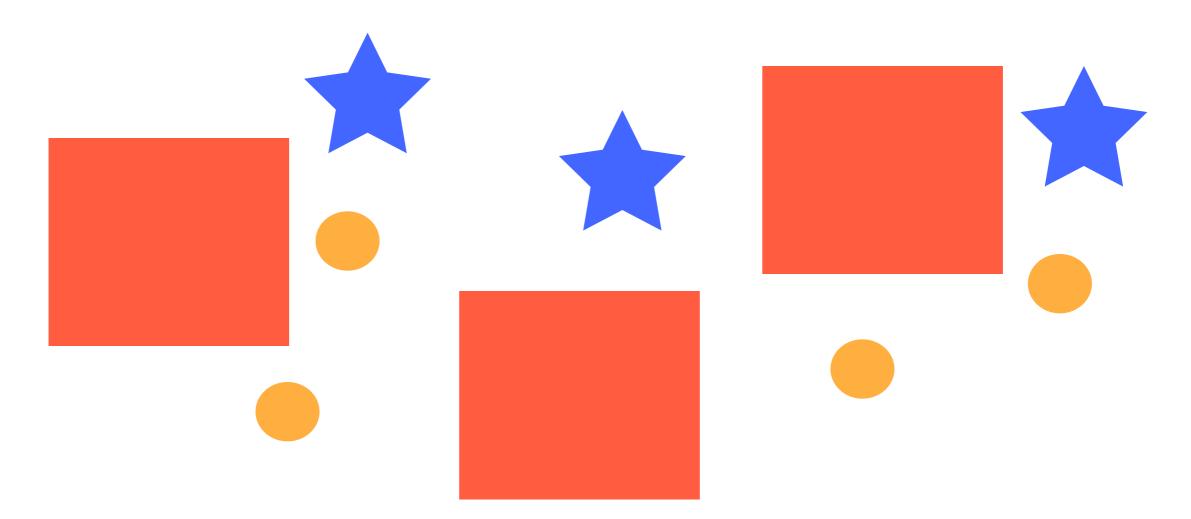
- How should we determine the value of K?
- Option -1: roll the dice, close your eyes, and hope for the best
- Option 0: take a conservative guess (e.g., K = 5)?
- Option 1: try out a range of values (e.g., K = 1, 5, 10, 20, 50, 100) and set it to the value that maximizes performance based on a sensible metric?



Why is this a bad idea?

Parameter Tuning toy example

• Objective: distinguish between stars, squares, and circles

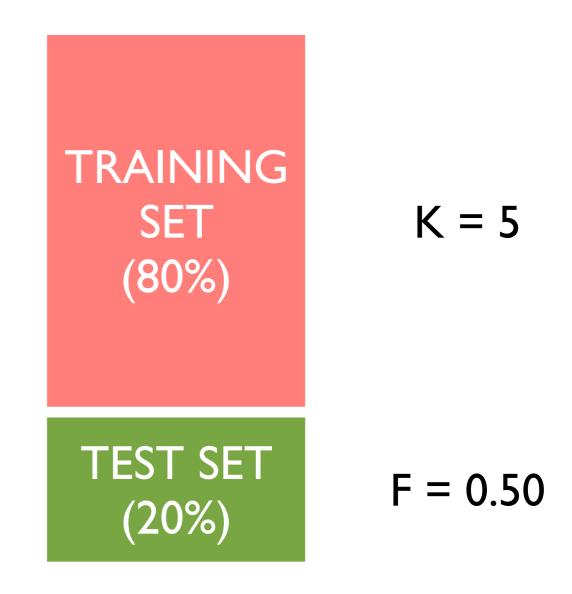


• Parameters: the relative importance between (1) size, (2) color, and (3) number of sides

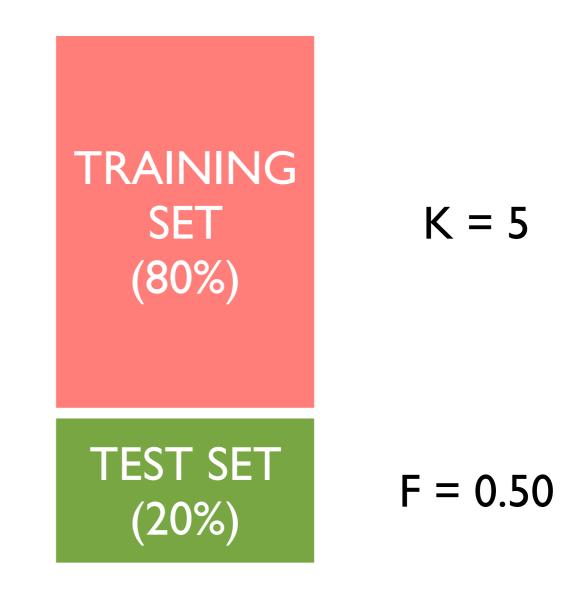
- The goal is to set parameter values such that we maximize performance
- What is the performance that we are really interested in?
- We care about performance on <u>previously unseen</u> data
- We care about <u>generalization</u> performance!
- Our training set may contain regularities that are not meaningful
- We care about those regularities that are meaningful for the overall population!

- Option 2:
 - 1. divide the data set into two sets
 - training set: a set used to find the best parameter values (e.g., 80%)
 - test set: a held-out set used to evaluate model performance (e.g., 20%)
 - 2. train: find the parameter value that maximize performance on the training set
 - 3. test: evaluate the model (with the best training-set parameter value) on the test set

- Split the data into two sets.
- Find the parameter value that maximizes performance on the training set.
- Evaluate the system with that parameter value on the test set.



- Split the data into two sets.
- Find the parameter value that maximizes performance on the training set.
- Evaluate the system with that parameter value on the test set.



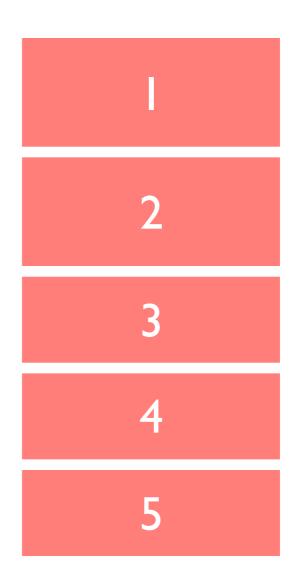
Advantages and Disadvantages?

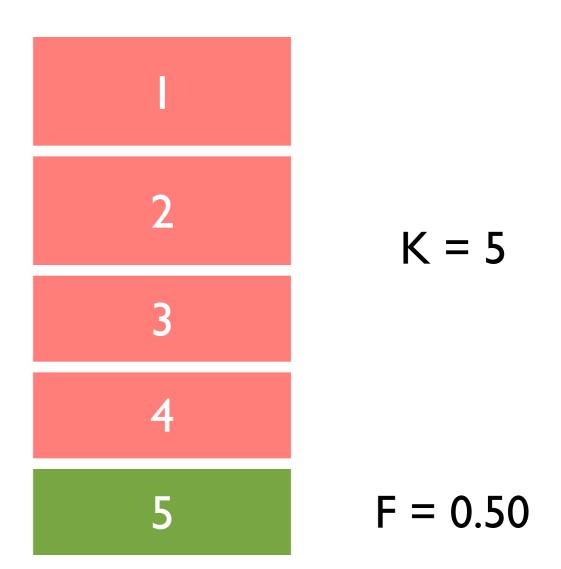
Single Train/Test Split

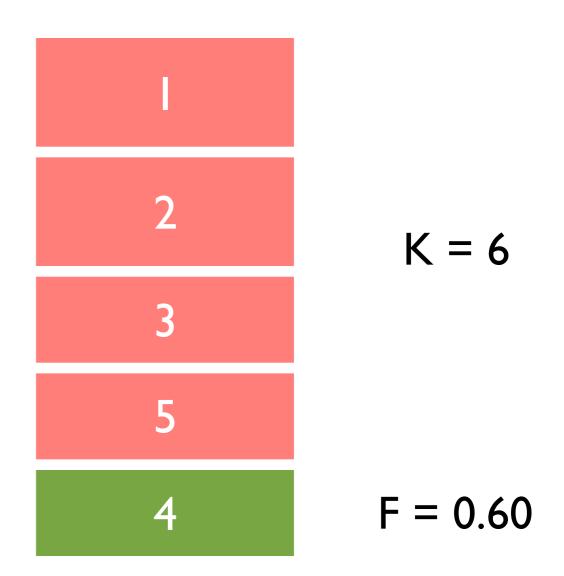
- Advantage
 - the data used to find the optimal parameter value is not the same data used to test!
 - we are testing generalization performance.
- Disadvantage
 - we are putting all our eggs in one basket!
 - out of pure coincidence, the training set may have regularities that don't generalize to the test set

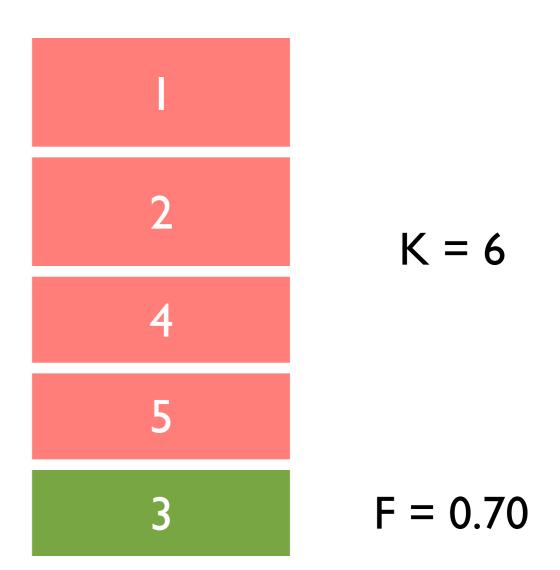
- Option 3: cross-validation
 - 1. divide the data into N sets of instances
 - 2. use the union of N-1 sets to find the best parameter values
 - 3. measure performance (using the best parameters) on the held-out set
 - 4. do steps 2-3 N times
 - 5. average performance across the N held-out sets
- This is called N-fold cross-validation (usually, N=10)

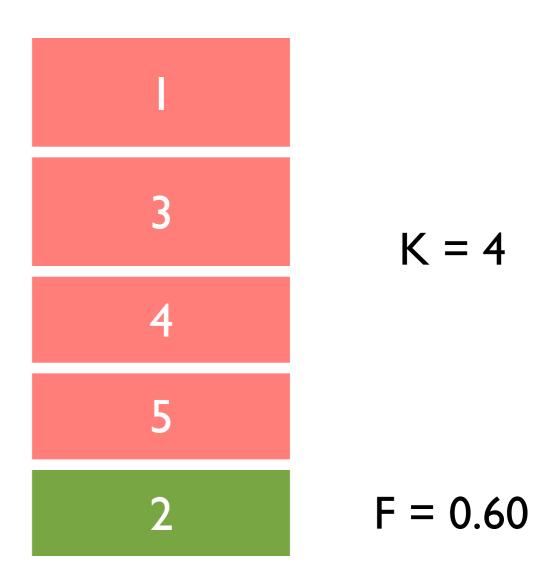
• Split the data into N = 5 folds

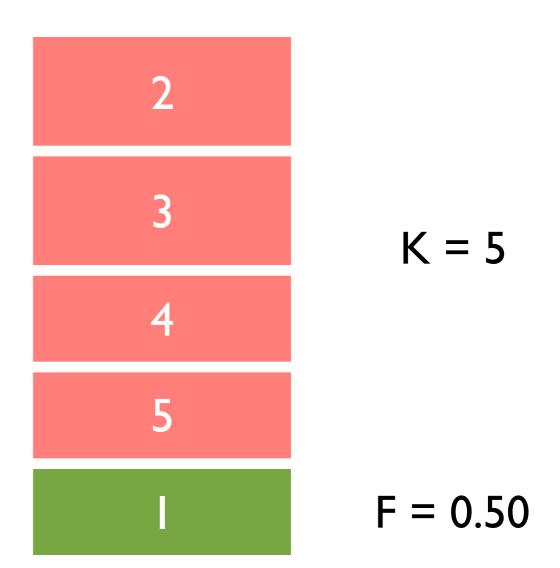




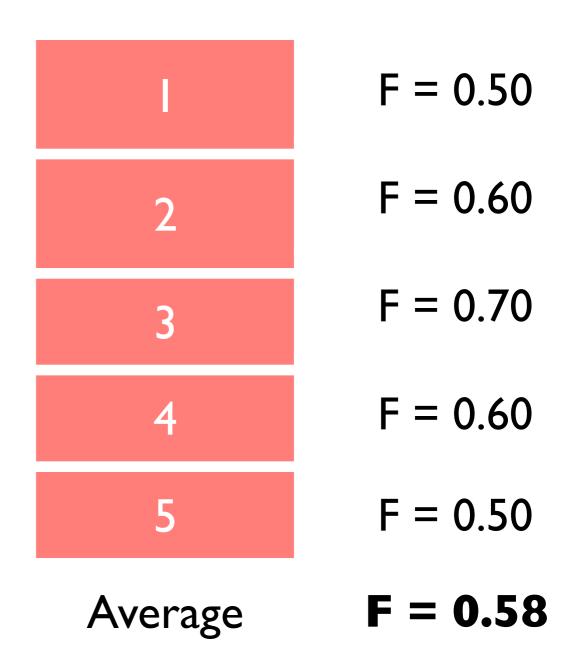




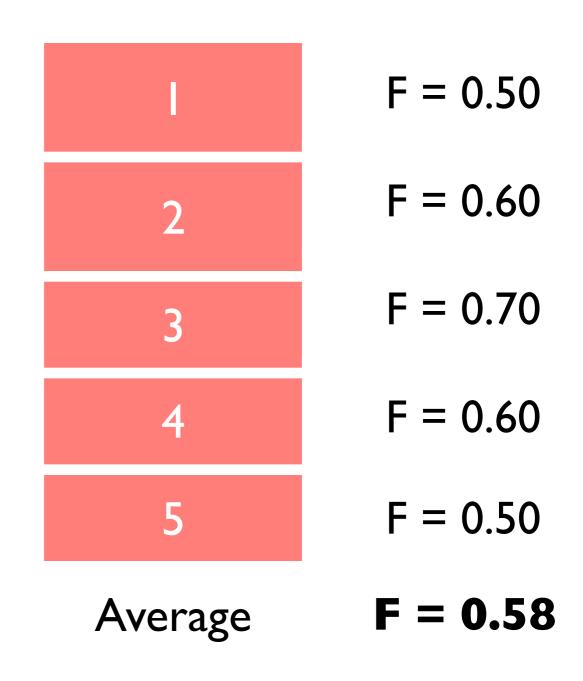




• Average the performance across held-out folds



• Average the performance across held-out folds

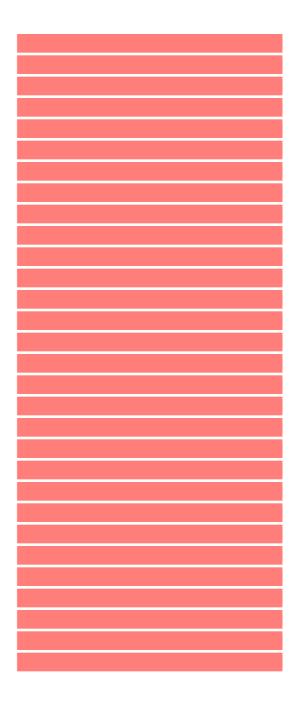


Advantages and Disadvantages?

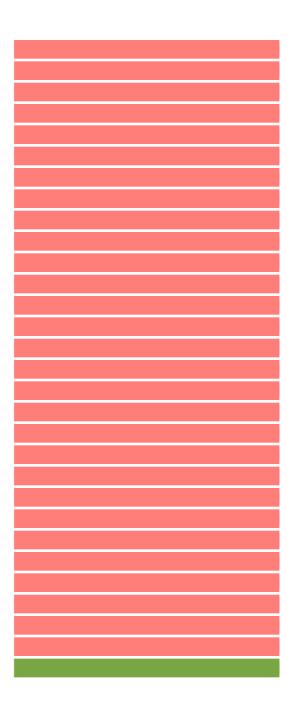
N-Fold Cross-Validation

- Advantage
 - multiple rounds of generalization performance.
- Disadvantage
 - ultimately, we'll tune parameters on the whole dataset and send our system into the world.
 - a model trained on 100% of the data should perform better than one trained on 80%.
 - thus, we may be underestimating the model's performance!

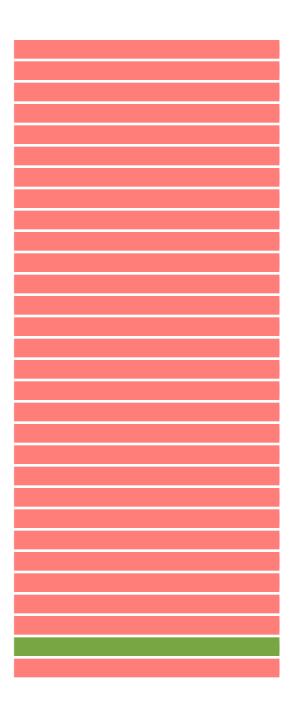
• Split the data into N folds of 1 instance each



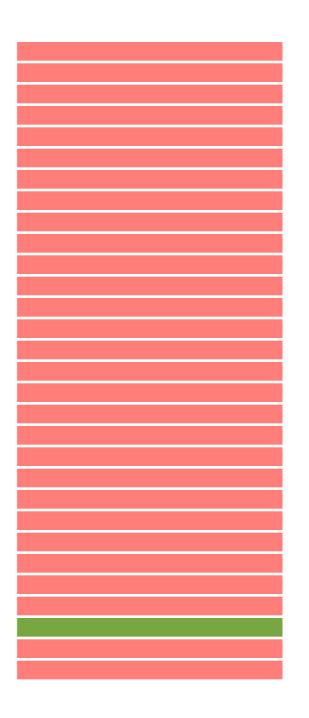
• For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.



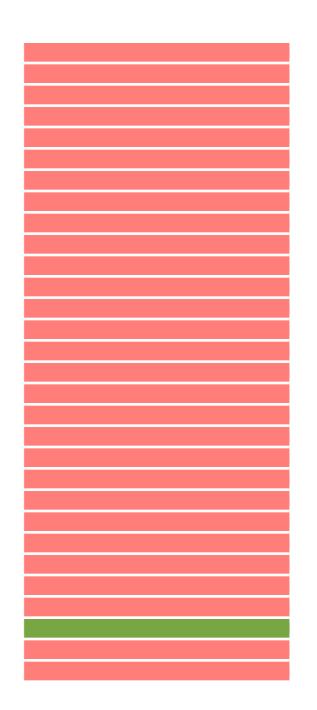
 For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.



- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each held-out instance



- For each instance, find the parameter value that maximize performance on for the other instances and and test (using this parameter value) on the held-out instance.
- And so on ...
- Finally, average the performance for each held-out instance



Advantages and Disadvantages?

- Advantages
 - multiple rounds of generalization performance.
 - each training fold is as similar as possible to the one we will ultimately use to tune parameters before sending the system out into the world.
- Disadvantage
 - our estimate of generalization performance may still be artificially high
 - why?

- Advantages
 - multiple rounds of generalization performance.
 - each training fold is as similar as possible to the one we will ultimately use to tune parameters before sending the system out into the world.
- Disadvantage
 - our estimate of generalization performance may still be artificially high
 - we are likely to try lots of different things and pick the one with the best "generalization" performance
 - still indirectly over-training to the dataset (sigh...)

Experimentation

Jaime Arguello INLS 613: Text Data Mining jarguell@email.unc.edu

October 23, 2017

Outline

Parameter Tuning Cross-Validation Significance tests

Comparing Systems

	Train and test both	Fold	System A	System B
		1	0.2	0.5
	systems using 10-	2	0.3	0.3
	fold cross validation	3	0.1	0.1
•	Use the same folds	4	0.4	0.4
	for both systems	5	1	1
	for both systems	6	0.8	0.9
•	Compare the	7	0.3	0.1
	difference in average	8	0.1	0.2
	performance across	9	0	0.5
	held-out folds	10	0.9	0.8
		Average	0.41	0.48
			Difference	0.07

Significance Tests motivation

- Why would it be risky to conclude that System B is better System A?
- Put differently, what is it that we're trying to achieve?

Significance Tests motivation

- In theory: that the average performance of System B is greater than the average performance of System A for all possible test sets.
- However, we don't have all test sets. We have a sample
- And, this sample may favor one system vs. the other!

Significance Tests definition

• A significance test is a statistical tool that allows us to determine whether a difference in performance reflects a true pattern or just random chance

Significance Tests ingredients

- Test statistic: a measure used to judge the two systems (e.g., the difference between their average F-measure)
- Null hypothesis: no "true" difference between the two systems
- P-value: take the value of the observed test statistic and compute the probability of observing a value that large (or larger) <u>under the null hypothesis</u>

Significance Tests ingredients

- If the p-value is large, we cannot reject the null hypothesis
- That is, we cannot claim that one system is better than the other
- If the p-value is small (*p*<0.05), we can reject the null hypothesis
- That is, the observed test-statistic is not due to random chance

Comparing Systems

		Fold	System A	System B
		1	0.2	0.5
•	P-value: the probability	2	0.3	0.3
	of observing a	3	0.1	0.1
	difference equal to or	4	0.4	0.4
	greater than 0.07	5	1	1
	under the null	6	0.8	0.9
	hypothesis (i.e., the	7	0.3	0.1
		8	0.1	0.2
	systems are actually	9	0	0.5
	equally good).	10	0.9	0.8
		Average	0.41	0.48
			Difference	0.07

Fisher's Randomization Test procedure

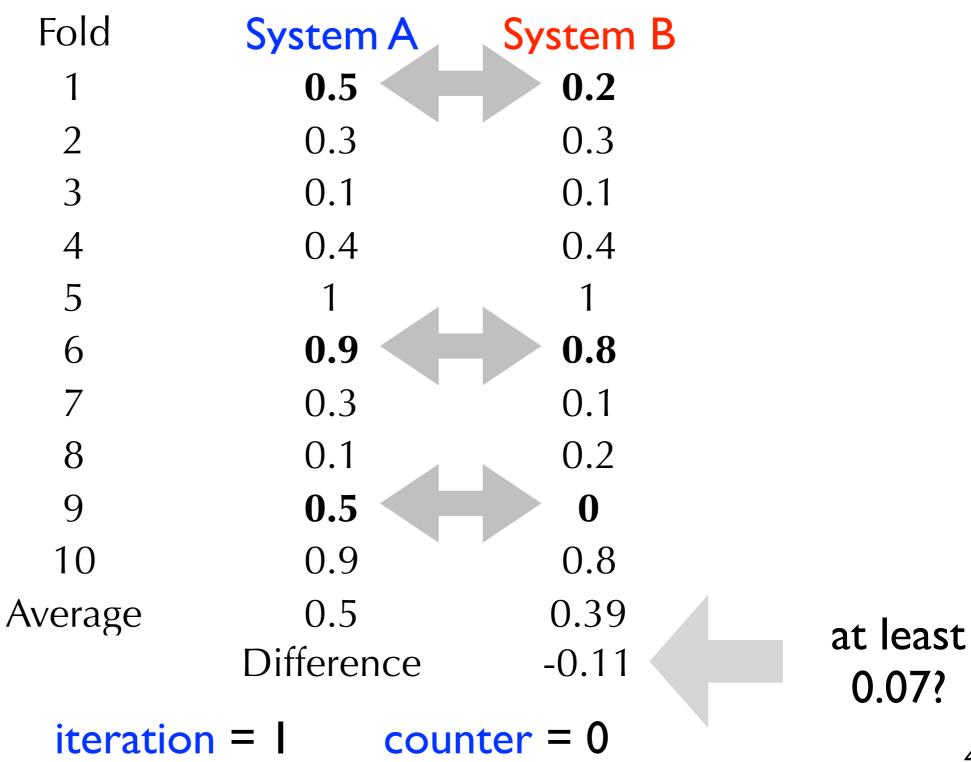
- Inputs: counter = 0, N = 100,000
- Repeat N times:

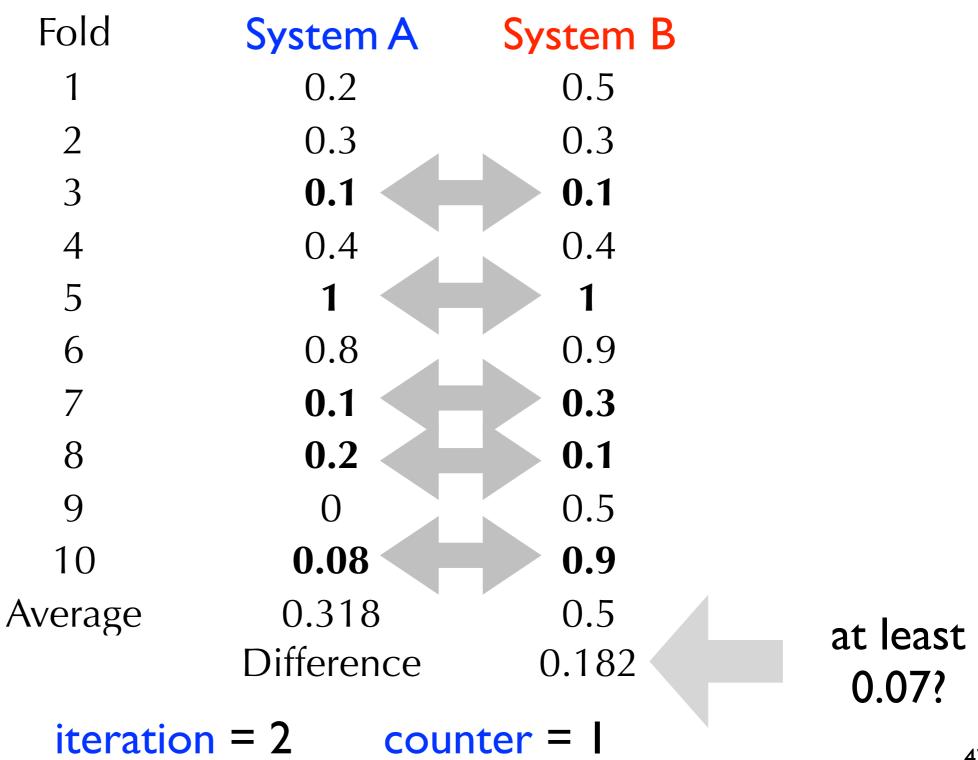
Step 1: for each fold, flip a coin and if it lands 'heads', flip the result between System A and B

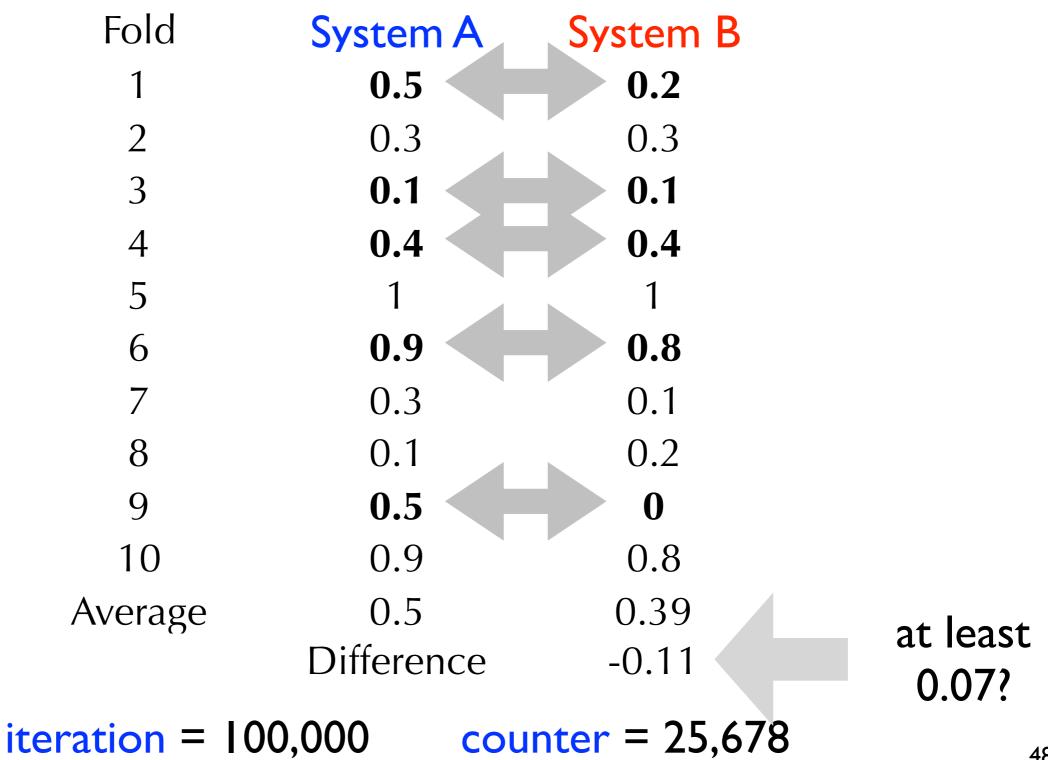
Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment **counter**

• Output: counter / N

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07







Fisher's Randomization Test procedure

- Inputs: counter = 0, N = 100,000
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment **counter**

• Output: counter / N = (25,678/100,00) = 0.25678

- Under the null hypothesis, the probability of observing a value of the test statistic of 0.07 or greater is about 0.26.
- Because p > 0.05, we cannot confidently say that the value of the test statistic is <u>not</u> due to random chance.
- A difference between the average F-measure values of 0.07 is not significant

Fisher's Randomization Test procedure

- Inputs: counter = 0, N = 100,000
- Repeat N times:

Step 1: for each query, flip a coin and if it lands 'heads', flip the result between System A and B

Step 2: see whether the test statistic is equal to or greater than the one observed and, if so, increment **counter**

• Output: counter / N = (25,678/100,00) = 0.25678

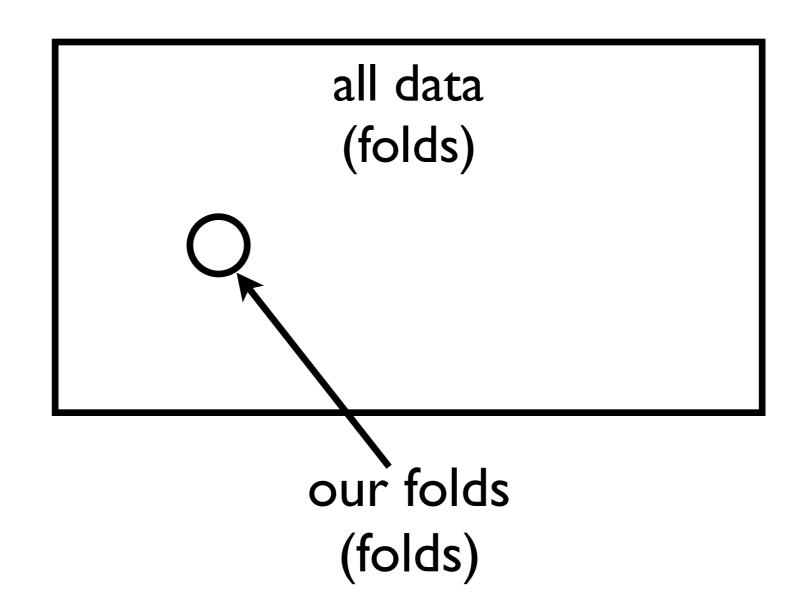
This is a one-tailed test (B > A). How can we modify it to be a two-tailed test (B != A)

Fisher's Randomization Test procedure

		Fold	System A	System B
•	P-value: the probability	1	0.2	0.5
	of observing a	2	0.3	0.3
	difference <i>in the</i>	3	0.1	0.1
		4	0.4	0.4
	absolute value equal to	5	1	1
	or greater than 0.07	6	0.8	0.9
	under the null	7	0.3	0.1
	hypothesis (i.e., the	8	0.1	0.2
	systems are actually	9	0	0.5
	equal).	10	0.9	0.8
		Average	0.41	0.48
			Difference	0.07

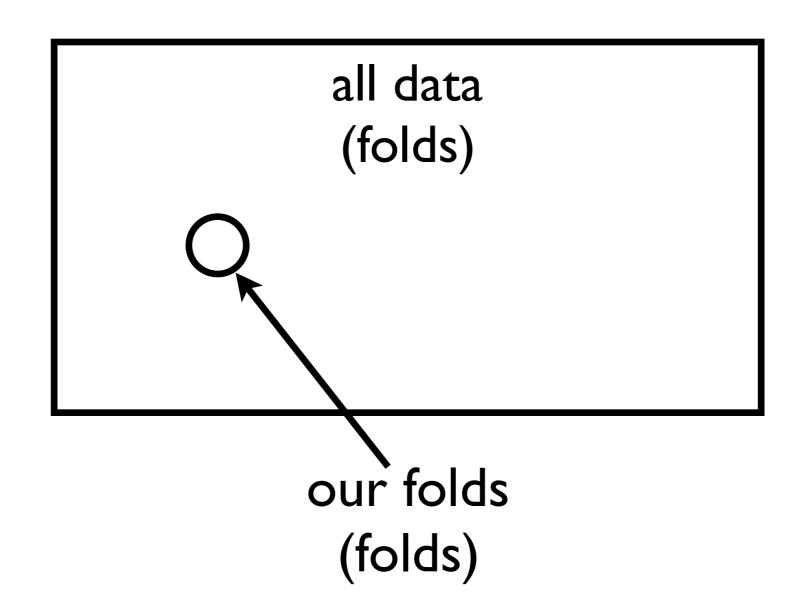
Bootstrap-Shift Test motivation

• Our sample is a representative sample of all data



Bootstrap-Shift Test motivation

• If we sample (with replacement) from our sample, we can generate a new representative sample of all data



- Inputs: Array $T = \{\}, N = 100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to **T**

- Step 3: compute <u>average</u> of numbers in T
- **Step 4:** reduce every number in **T** by <u>average</u>
- Output: % of numbers in T greater than or equal to the observed test statistic

- Inputs: Array $T = \{\}, N = 100,000$
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to **T**

- Step 3: compute <u>average</u> of numbers in T
- **Step 4:** reduce every number in **T** by <u>average</u>
- **Output:** % of numbers in **T** greater than or equal to the observed test statistic

Fold	System A	System B
1	0.2	0.5
2	0.3	0.3
3	0.1	0.1
4	0.4	0.4
5	1	1
6	0.8	0.9
7	0.3	0.1
8	0.1	0.2
9	0	0.5
10	0.9	0.8
Average	0.41	0.48
	Difference	0.07

Fold	System A	System B	sample
1	0.2	0.5	0
2	0.3	0.3	1
3	0.1	0.1	2
4	0.4	0.4	2
5	1	1	0
6	0.8	0.9	1
7	0.3	0.1	1
8	0.1	0.2	1
9	0	0.5	2
10	0.9	0.8	0

Fold	System A	System	B	
2	0.3	0.3		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	0	0.5		
9	0	0.5		
Average	0.25	0.35		
	Difference	0.1		$T = \{0.10\}$
	iteratio	on = I		

Fold	System A	System B	sample
1	0.2	0.5	0
2	0.3	0.3	0
3	0.1	0.1	3
4	0.4	0.4	2
5	1	1	0
6	0.8	0.9	1
7	0.3	0.1	1
8	0.1	0.2	1
9	0	0.5	1
10	0.9	0.8	1

 $T = \{0.10\}$

iteration = 2

Fold	System A	System I	B	
3	0.1	0.1		
3	0.1	0.1		
3	0.1	0.1		
4	0.4	0.4		
4	0.4	0.4		
6	0.8	0.9		
7	0.3	0.1		
8	0.1	0.2		
9	0	0.5		
10	0.9	0.8		
Average	0.32	0.36		$T = \{0.10,$
	Difference	0.04		0.04
	iteratio	on = 2		

Fold	System A	System B	
1	0.2	0.5	
1	0.2	0.5	
4	0.4	0.4	
4	0.4	0.4	
4	0.4	0.4	
6	0.8	0.9	
7	0.3	0.1	
8	0.1	0.2	
8	0.1	0.2	
10	0.9	0.8	$T = \{0.10,$
Average	0.38	0.44	0.04,
	Difference	0.06	U.UT ,
	iteration = 100,000		0.06 }

- Inputs: Array T = {}, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to **T**

- Step 3: compute <u>average</u> of numbers in T
- **Step 4:** reduce every number in **T** by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

• For the purpose of this example, let's assume N = 10.

$T = \{0.10,$	T'= {-0.02,
0.04,	-0.08,
0.21,	0.09,
0.20,	0.08,
0.13,	0.01,
0.09,	-0.03,
0.22,	0.10,
0.07 , Step 3	Step 4 -0.05 ,
0.03,	-0.09,
0.11}	-0.01 }

Average = 0.12

- Inputs: Array T = {}, N = 100,000
- Repeat N times:

Step 1: sample 10 folds (with replacement) from our set of 10 folds (called a subsample)

Step 2: compute test statistic associated with new sample and add to **T**

- Step 3: compute <u>average</u> of numbers in T
- **Step 4:** reduce every number in **T** by <u>average</u>
- Output: % of numbers in T' greater than or equal to the observed test statistic

• **Output:** (3/10) = 0.30

$T = \{0.10,$	T'= {-0.02,
0.04,	-0.08,
0.21,	0.09,
0.20,	0.08,
0.13,	0.01,
0.09,	-0.03,
0.22,	0.10,
0.07 , Step 3	Step 4 -0.05 ,
0.03,	-0.09,
0.11}	-0.01 }

Average = 0.12

• **Output:** (3/10) = 0.30

T = { 0.10 ,		T	= { -0.02 ,
0.04,	This is a one-tailed test. How can we modify it to be a two-tailed test?		-0.08,
0.21,			0.09,
0.20,			0.08,
0.13,			0.01,
0.09,			-0.03,
0.22,			0.10,
0.07,	Step 3	Step 4	-0.05,
0.03,			-0.09,
0.11 }			-0.01 }

Average = 0.12

Significance Tests summary

- Significance tests help us determine whether the outcome of an experiment signals a "true" trend
- The null hypothesis is that the observed outcome is due to random chance (sample bias, error, etc.)
- There are many types of tests
- Parametric tests: assume a particular distribution for the test statistic under the null hypothesis
- Non-parametric tests: make no assumptions about the test statistic distribution under the null hypothesis
- The randomization and bootstrap-shift tests make no assumptions, are robust, and easy to understand