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• Philosophical questions

• Derivatives: What are they good for?

• Linear regression

• Multiple linear regression

• Logistic regression

Overview
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• What would you do if …

• What does this have to do with linear classifiers?

Philosophical Questions



4

Functions

x yf(x)
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Derivatives
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Derivatives
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Derivatives

y = 2x
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Derivatives
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• The derivative of f(x) outputs the slope of f(x) for a 
particular value of x

• A point of which the slope is zero is a point at which 
f(x) is at its highest or lowest value.

• What does this have to do with machine learning?

Derivatives: What are they good for?
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Derivatives

2x = 0

x = 0
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Computation Graphs

a
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y = 3(a+ bc)

f(a, b, c)
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Computation Graphs

a
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c

y = 3(a+ bc)

y = 3u

u = (a+ v)

v = bc
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Derivatives: Chain Rule
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Derivatives: Chain Rule

a

b

c
y = 3u

u = (a+ v)

v = bc

y = 3(a+ bc)
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= b⇥ 1⇥ 3 = 3b
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• Philosophical questions

• Derivatives: What are they good for?

• Linear regression

• Multiple linear regression

• Logistic regression

Overview
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Linear Regression

x yf(x)

y = wx+ b
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Linear Regression
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Linear Regression
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• Input: set of m training examples (x,y)

• Find the value of w and b that minimize the error:

Linear Regression: Training

y = wx+ b

mX

i=1

⇣
y(i) � ŷ(i)

⌘2
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• Find the value of w and b that minimize the error:

Linear Regression: Training

y = wx+ b

mX

i=1

⇣
y(i) � ŷ(i)

⌘2

mX

i=1

⇣
y(i) � wx(i) � b

⌘2
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• Find the value of w and b that minimize the error:

Linear Regression: Training

y = wx+ b

• Take the derivative with respect to w, set it equal to 
0, and solve for w.

• Take the derivative with respect to b, set it equal to 0, 
and solve for b.

mX

i=1

⇣
y(i) � wx(i) � b

⌘2
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• Find the value of w and b that minimize the error:

Linear Regression: Training

b = ȳ � wx̄

http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_10.pdf

w =
1
m

Pm
i=1

�
x(i) � x̄

� �
y(i) � ȳ

�

Pm
i=1

�
x(i) � x̄

�2
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• Find the value of w and b that minimize the error:

Linear Regression: Training

b = ȳ � wx̄

http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_10.pdf

Always 
positive!

It depends!

w =
1
m

Pm
i=1

�
x(i) � x̄

� �
y(i) � ȳ

�

Pm
i=1

�
x(i) � x̄

�2
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Temperature in Rm 001
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Linear Regression: Prediction

x

y = wx+ b
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• Philosophical questions

• Derivatives: What are they good for?

• Linear regression

• Multiple linear regression

• Logistic regression

Overview
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Multiple Linear Regression

x1

x2

x3

xn

...

f(x1, x2, . . . , xn) y

y =
nX

j=1

(wjxj) + b



27

Multiple Linear Regression

Size
(feet)

No. of 
bedrooms

No. of 
floors

Age
(years)

Price
(x$1000)

2,350 5 2 45 500

1,600 3 2 20 450

2,000 3 2 30 250

854 2 1 10 200

560 1 1 30 180
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Multiple Linear Regression: Training

• Given:

• We want: 

{(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))}

ŷ(i) ⇡ y(i)
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Multiple Linear Regression: Training

• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2
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Multiple Linear Regression: Training

• Cost Function: the discrepancy between the predicted 
and actual output values for all training instances

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

J (w, b) =
1

m

mX

i=1

✓
1

2
(y(i) � ŷ(i))2

◆
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Gradient Descent: Intuition
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Gradient Descent: Intuition
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Gradient Descent

• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

• Let’s see what the slope of the loss function is with 
respect to parameter b!

• Note: this will only consider one training example!
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Gradient Descent

• Derivative of the loss function with respect to b

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

L(y(i), ŷ(i)) = 1

2

0

@y(i) �
nX

j=1

(wjx
(i)
j )� b

1

A
2

d

db
L(y(i), ŷ(i)) = �

⇣
y(i) � ŷ(i)

⌘

d

db
L(y(i), ŷ(i)) = ŷ(i) � y(i)
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Gradient Descent

Scenario Action!

+
Decrease

(nudge left)

--
Increase

(nudge right)

0 Do nothing!

ŷ(i) > y(i)

ŷ(i) < y(i)

ŷ(i) ⇡ y(i)

ŷ(i) � y(i)

y =
nX

j=1

(wjxj) + b

d

db
L(y(i), ŷ(i)) = ŷ(i) � y(i)
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Gradient Descent

• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

• Let’s see what the slope of the loss function is with 
respect to parameter wj!

• Note: this will only consider one training example!
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Gradient Descent

• Derivative of the loss function with respect to wj

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

L(y(i), ŷ(i)) = 1

2

0

@y(i) �
nX

j=1

(wjx
(i)
j )� b

1

A
2

d

dwj
L(y(i), ŷ(i)) = �x(i)

j

⇣
y(i) � ŷ(i)

⌘

d

dwj
L(y(i), ŷ(i)) = (ŷ(i) � y(i))xj
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Gradient Descent

Scenario Action!

+
Go in the opposite 

direction as

-
Go in the same 

direction as

0 Do nothing!

ŷ(i) > y(i)

ŷ(i) < y(i)

ŷ(i) ⇡ y(i)

ŷ(i) � y(i)

x(i)
j

x(i)
j

y =
nX

j=1

(wjxj) + b

d

dwj
L(y(i), ŷ(i)) = (ŷ(i) � y(i))xj
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Gradient Descent

• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = 1

2
(y(i) � ŷ(i))2

• Given one training example, we can take derivatives 
with respect to each parameter to see what direction 
we should be going to minimize the loss function.



40

Gradient Descent

• Repeat many times (or until convergence):

b b� ↵
1

m

mX

i=1

⇣
ŷ(i) � y(i)

⌘

wj  wj � ↵
1

m

mX

i=1

⇣
(ŷ(i) � y(i))x(i)

j

⌘
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Gradient Descent

• Repeat many times (or until convergence):

b b� ↵
1

m

mX

i=1

⇣
ŷ(i) � y(i)

⌘

• If we are overshooting the target, reduce b

• If we are undershooting the target, increase b

• Otherwise, do nothing
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Gradient Descent

• Repeat many times (or until convergence):

wj  wj � ↵
1

m

mX

i=1

⇣
(ŷ(i) � y(i))x(i)

j

⌘

• If we are overshooting the target, reduce wj

proportional to the value of xj

• If we are undershooting the target, increase wj

proportional to the value of xj

• Otherwise, do nothing



43

• Philosophical questions

• Derivatives: What are they good for?

• Linear regression

• Multiple linear regression

• Logistic regression

Overview
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• Linear regression: predict y given x

• Multiple linear regression: predict y given x_1, x_2, 
…, x_n

Logistic Regression
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• Logistic Regression: predict P(y=1|x_1, x_2, …, x_n)

• We can use logistic regression to do binary 
classification.

Logistic Regression
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Logistic Regression

x1

x2

x3

xn

...

f(x1, x2, . . . , xn) P (y = 1|x)
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Logistic Regression
x1

x2

x3

xn

...

f(x1, x2, . . . , xn) P (y = 1|x)

z =
nX

j=1

(wjxj) + b

�(z) =
1

1 + e�z



Logistic Regression

�(z) =
1

1 + e�z
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• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

z =
nX

j=1

(wjxj) + b

ŷ = �(z) =
1

1 + e�z

L(y(i), ŷ(i)) = �
⇣
y(i) log ŷ(i) + (1� y(i)) log(1� ŷ(i))

⌘

Logistic Regression
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• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = �
⇣
y(i) log ŷ(i) + (1� y(i)) log(1� ŷ(i))

⌘

Logistic Regression

• If the true value is 1, 
we want the predicted 
value to be high.

• Remember: log(1) = 0
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• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

L(y(i), ŷ(i)) = �
⇣
y(i) log ŷ(i) + (1� y(i)) log(1� ŷ(i))

⌘

Logistic Regression

• If the true value is 0, 
we want the predicted 
value to be low.

• Remember: log(1) = 0



L(y(i), ŷ(i)) = �
⇣
y(i) log ŷ(i) + (1� y(i)) log(1� ŷ(i))

⌘
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• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

Logistic Regression

z =
nX

j=1

(wjxj) + b

ŷ = �(z) =
1

1 + e�z

d

db
L(y(i), ŷ(i)) = ŷ(i) � y(i)
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• Loss Function: the discrepancy between the predicted 
and actual output values for a single training instance

Logistic Regression

z =
nX

j=1

(wjxj) + b

ŷ = �(z) =
1

1 + e�z

d

dwj
L(y(i), ŷ(i)) = (ŷ(i) � y(i))xj
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Logistic Regression: 
Gradient Descent

• Repeat many times (or until convergence):

b b� ↵
1

m

mX

i=1

⇣
ŷ(i) � y(i)

⌘

wj  wj � ↵
1

m

mX

i=1

⇣
(ŷ(i) � y(i))x(i)

j

⌘
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• Repeat many times (or until convergence):

b b� ↵
1

m

mX

i=1

⇣
ŷ(i) � y(i)

⌘

• If we are overshooting the target, reduce b

• If we are undershooting the target, increase b

• Otherwise, do nothing

Logistic Regression: 
Gradient Descent
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• Repeat many times (or until convergence):

wj  wj � ↵
1

m

mX

i=1

⇣
(ŷ(i) � y(i))x(i)

j

⌘

• If we are overshooting the target, reduce wj

proportional to the value of xj

• If we are undershooting the target, increase wj

proportional to the value of xj

• Otherwise, do nothing

Logistic Regression: 
Gradient Descent
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• Philosophical questions

• Derivatives: What are they good for?

• Linear regression

• Multiple linear regression

• Logistic regression

Overview
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• Linear regression, multiple linear regression and 
logistic regression are examples of linear models

• Internally, linear models output a prediction based on 
a weighted combination of input features

• Features that are positively correlated with the target 
output get a high weight

• Features that are negatively correlated with the target 
output get a low weight

• Features that are uncorrelated with the target output 
get a zero weight

The Big Picture! 


