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Philosophical Questions

 What would you do if ...

e What does this have to do with linear classifiers?
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Derivatives: What are they good for?

e The derivative of f(x) outputs the slope of f(x) for a
particular value of x

« A point of which the slope is zero is a point at which
f(x) is at its highest or lowest value.

e What does this have to do with machine learning?
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Computation Graphs

y = 3(a + bc)

b f(a,b,c)




Computation Graphs
y = 3(a + bc)
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Derivatives: Chain Rule
y = 3(a + be)
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Derivatives: Chain Rule
y = 3(a + be)
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Linear regression

Overview

|5



Linear Regression
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# yawns from students

Linear Regression

Temperature in Rm Q0|
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# yawns from students

Linear Regression

y = wx + b

Temperature in Rm Q0|
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Linear Regression: Training
y = wx + b

 Input: set of m training examples (x,y)

e Find the value of w and b that minimize the error:

T

3 (ym B A<i>>2

1=1

19



Linear Regression: Training
y = wx + b

e Find the value of w and b that minimize the error:
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Linear Regression: Training
y = wx + b

Find the value of w and b that minimize the error:

(4

. , 2
3 (yw @ _ b)

1=1
« Take the derivative with respect to w, set it equal to

0, and solve for w.

» Take the derivative with respect to b, set it equal to O,
and solve for b.
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Linear Regression: Training

e Find the value of w and b that minimize the error:

v 2oy (2 —7) (v - 7)
S:?ll (aj(i) — 5'_3)2

U ==

b=1y— wx

http://seismo.berkeley.edu/~kirchner/eps_120/Toolkits/Toolkit_10.pdf
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Linear Regression: Training

e Find the value of w and b that minimize the error:

i (2 = 2) (v — )
Y (@O —2)7

Always / It depends!

positive! b — g — W

U ==
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# yawns from students

Linear Regression: Prediction
y = wx + b

A

y:w$+@

Temperature in Rm Q0|
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Overview

Multiple linear regression
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Multiple Linear Regression

T3 f(iCl,QEQ,...,LIZ‘n)_’y

y =Y (wjz;)+Db

j=1
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Multiple Linear Regression

Size No. of No. of Age Price
(feet) bedrooms floors (years) (x$1000)
2,350 5 2 45 500
1,600 3 2 20 450
2,000 3 2 30 250
354 2 1 10 200
560 1 1 30 180
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Multiple Linear Regression: Training

e (iven:

{1, yM), (2P),y2),. ..

e \We want:

| (x(m)7 y(m))}
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Multiple Linear Regression: Training

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

) (i Loy A
Ly, ") = 5" =57’
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Multiple Linear Regression: Training

« Cost Function: the discrepancy between the predicted
and actual output values for all training instances

1 ~ 1 1 [/ %
Ly, (>)_§(() ()2

_%Em:( A(z))>

1—=1
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Gradient Descent: Intuition
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Gradient Descent: Intuition
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Gradient Descent

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

) (i Loy G
Ly, ") = S =57’

* Let’s see what the slope of the loss function is with
respect to parameter b!

e Note: this will only consider one training example!
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Gradient Descent

Derivative of the loss function with respect to b

| | 1 . |
LD 50 = Z (D — 5(0))2
2
) (i 1 i - U
Ly, 5 = 2 (y< =Y (wjay)) - b)
7=1
d

RO :_( (i) _ A<z'>)
Ly, y' =1

d . | |
@ 2@y — a0 ()
- (Y, 9'") =g y
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Gradient Descent

d . . . .
(D 50Y = 58 g, (0)
LW ) =9 —y
Scenario Q(i) _ y(i) Action!
Q(i) ~ y(i) N Decrease

(nudge left)

Increase

1 (%)
y o<y (nudge right)

?;(i) ~ y(i) 0 Do nothing!
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Gradient Descent

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

) (i Loy G
Ly, ") = S =57’

* Let’s see what the slope of the loss function is with

!
respect to parameter w;!

e Note: this will only consider one training example!
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Gradient Descent

» Derivative of the loss function with respect to w;

o 1 . |
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Gradient Descent

A o | .

(D 5ODY = (5 — DY

du, W, 9") = (5 —y¥ )z,

Scenario ?;(i) . y(i) Action!
~ (1) (7) Go in the opposite
y o=y T direction as a:?
(1) (i) Go in the same
yroo<y ] direction as :z:y)
g(i) ~ y(i) 0 Do nothing!
mn
y =) (wjzj)+0b

S,
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Gradient Descent

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

) A Lo ) oG
LD, 5) = Sy = g0

« Given one training example, we can take derivatives
with respect to each parameter to see what direction
we should be going to minimize the loss function.
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Gradient Descent

e Repeat many times (or until convergence):

™m

1 | .
b b _Z(Am_ <z>)
— Oém Uy Uy

1=1
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Gradient Descent

e Repeat many times (or until convergence):

™m

1 . .
beb—a—3 (A<z> _ <z>>
— Ckm Uy Uy

1=1

 If we are overshooting the target, reduce b
 If we are undershooting the target, increase b

e Otherwise, do nothing
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Gradient Descent

e Repeat many times (or until convergence):

m

1 (i i (i
Wy <= Wy — O‘EZ ((y( ) — ))$§-))
1=1

 If we are overshooting the target, reduce w;

J
proportional to the value of x

» If we are undershooting the target, increase w;
proportional to the value of x;

e Otherwise, do nothing



Logistic regression

Overview
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Logistic Regression

e Linear regression: predict y given x

e Multiple linear regression: predict y given x_1, x_2,
., X_D

44



Logistic Regression

e Logistic Regression: predict P(y=1|x_1, x_2, ..., x_n)

« We can use logistic regression to do binary
classification.
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Logistic Regression

f(a1, 2, .

, Tn,)

L)
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Logistic Regression

f(iUl,SUQ,...,QE'n) _’P(y: 1‘33)
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Logistic Regression

o(z) = —

B 1l +e %




Logistic Regression

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

z = Z (wjz;)+0b
j=1

B 1
14 ez

y=o(z)

Ly, 9") = - (y(i) log 5 + (1 — ') log(1 — z?“)))
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Logistic Regression

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

Ly, 9'") = - (y(” log

(1 =) log(1 - §7))

] e If the true valueis 1,
we want the predicted

j value to be high.
| A I R e Remember: log(1) =0
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Logistic Regression

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

Ly, 9'") = - (y(” log "

(1—y")log(1 — ?)(”))

] e If the true value is O,
we want the predicted

j value to be low.
| N e Remember: log(1) =0

51



Logistic Regression

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

z = Z (wjz;)+0b
j=1

B 1
14 e

y=o(2)

Ly, 9") = - (y(i) log 5 + (1 — ') log(1 — yf(i)))

d . | |
@) a0y — ) (D)
o7 (¥, 9\") =1 y
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Logistic Regression

e Loss Function: the discrepancy between the predicted
and actual output values for a single training instance

< = Z (wj.ibj) -+ b
71=1

B 1
14 e

y=o(2)

Ly, 9") = - (y“) log 5 + (1 — ') log(1 — yf(i)))

d . | |
O @ DY = () _ (D)
duw, (v, 9"") = (9 Yy ) ;
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Logistic Regression:

Gradient Descent

e Repeat many times (or until convergence):
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Logistic Regression:

Gradient Descent

e Repeat many times (or until convergence):

™m

1 . .
beb—a—3 (A<z> _ <z>>
— Ckm Uy Uy

1=1

 If we are overshooting the target, reduce b
 If we are undershooting the target, increase b

e Otherwise, do nothing
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Logistic Regression:

Gradient Descent

e Repeat many times (or until convergence):

m

1 (i i (i
Wy <= Wy — O‘EZ ((y( ) — ))$§-))
1=1

» If we are overshooting the target, reduce w,
proportional to the value of x

 If we are undershooting the target, increase w;,

J
proportional to the value of x;

e Otherwise, do nothing
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The Big Picture!

Linear regression, multiple linear regression and
logistic regression are examples of linear models

Internally, linear models output a prediction based on
a weighted combination of input features

Features that are positively correlated with the target

output get a high weight

Features that are negatively correlated with the target
output get a low weight

Features that are uncorrelated with the target output
get a zero weight
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