Jaime Arguello
INLS 509: Information Retrieval

jarguell@email.unc.edu

November 21, 2016

Up to this point...

- Classic information retrieval
 - search from a single centralized index
 - all queries processed the same way
- Federated search
 - search across <u>multiple distributed collections</u>
 - a.k.a: resources, search engines, search services, etc.

Motivation

- Some content cannot be crawled and centrally indexed (exposed only via a search interface)
 - also referred to as "the hidden web"
- Even if crawl-able, we may prefer searchable access to this content via the third-party search engine. why?
 - content updated locally
 - unique document representation (e.g., metadata)
 - customized retrieval

(World Wide Science)

• Exhaustive search (across <u>all</u> collections)

(World Wide Science)

(World Wide Science)

Summary of All Results for this Search			
National Library of Latvia	\checkmark	3	
National Library of the Czech Republic Manuscriptorium	\checkmark	0	
Nepal Journals Online (Nepal)	\checkmark	0	
Norwegian Open Research Archives (NORA)	\checkmark	0	
OpenSIGLE	\checkmark	9	
Philippines Journals Online (Philippines)	※	0	
Science.gov (United States)	\checkmark	100	
Scientific Electronic Library Online (Argentina)	\checkmark	0	
Scientific Electronic Library Online (Brazil)	\checkmark	0	
Scientific Electronic Library Online (Chile)	\checkmark	0	
Scientific Electronic Library Online (Colombia)	\checkmark	0	
Scientific Electronic Library Online (Cuba)	\checkmark	0	
Scientific Electronic Library Online (Mexico)	\checkmark	0	
Scientific Electronic Library Online (Portugal)	\checkmark	0	
Scientific Electronic Library Online (Spain)	\checkmark	0	
Scientific Electronic Library Online (Venezuela)	\checkmark	0	

(World Wide Science)

Summary of All Results for this Search			
National Library of Latvia	\checkmark	3	
National Library of the Czech Republic Manuscriptorium	\checkmark	0	
Nepal Journals Online (Nepal)	\checkmark	0	
Norwegian Open Research Archives (NORA)	\checkmark	0	
OpenSIGLE	\checkmark	9	
Philippines Journals Online (Philippines)	×	0	
Science.gov (United States)	\checkmark	100	
Online (Argentina)	\checkmark	0	
Scientific Electronic Library Online (Brazil)	\checkmark	0	
Scientific Electronic Library Online (Chile)	\checkmark	0	
Scientific Electronic Library Online (Colombia)	\checkmark	0	
Scientific Electronic Library Online (Cuba)	\checkmark	0	
Scientific Electronic Library Online (Mexico)	\checkmark	0	
Scientific Electronic Library Online (Portugal)	\checkmark	0	
Scientific Electronic Library Online (Spain)	\checkmark	0	
Scientific Electronic Library Online (Venezuela)	V	0	

Federated Search Examples (Vertical Aggregation in Web Search)

pittsburgh

Search

maps

Ingram Crafton Shadyside Pittsburgh Crafton Mt Washington Carson Sw Mt Oliver Sw Mt Oliver Map data C20 10 Coogle

Pittsburgh, PA maps.google.com

web

City of Pittsburgh, Pennsylvania - Pghgov.com 🕸 🔍

Official city site including information on economic development, resident information, links, tourism and contact information.

www.city.pittsburgh.pa.us/ - Cached - Similar

Images for pittsburgh - Report images

images

web

Pittsburgh - Wikipedia, the free encyclopedia 🕾 🔍

Pittsburgh is the second-largest city in the U.S. Commonwealth of Pennsylvania and the county seat of Allegheny County. Regionally, it anchors the largest ...

History of Pittsburgh - Neighborhoods - List of people from the Pittsburgh - 1936

History of Pittsburgh - Neighborhoods - List of people from the Pittsburgh ... - 1936 en.wikipedia.org/wiki/Pittsburgh - Cached - Similar

Books for pittsburgh

books

<u>Pittsburgh:</u> a sketch of its early social life - Charles William Dahlinger - 1916 - 216 pages <u>Pittsburgh:</u> 1758-2008 - Pittsburgh Post-Gazette, Carnegie Library of Pittsburgh - 2008 - 128 pages

Pittsburgh: 17582008 surveys the citys evolution from strategic fort in the wilderness ...

books.google.com

Some collections do not retrieve any results

We can often satisfy the user only a few collections

Why?

The Cluster Hypothesis

(van Rijsbergen, 1979)

- Similar documents are relevant to similar information needs
 - used in cluster-based retrieval
 - document score normalization
 - pseudo-relevance feedback
 - federated search

 Objective: given a query, predict which <u>few</u> collections have relevant documents and combine their results into a single document ranking

Resource representation

Resource selection

Results merging

Resource Representation

- Gathering information about what each resource contains
- What types of information needs does each resource satisfy?

Resource Selection

 Deciding which few resources to search given a user's query

portal

Results Merging

Combining their results into a merged ranking single output C_3 portal interface query

off-line

resource representation

resource selection

results merging

at query-time

Cooperative vs. Uncooperative

- Cooperative environment
 - assumption: resources provide accurate and complete information to facilitate selection and merging
 - centrally designed protocols and APIs
- Uncooperative environment
 - assumption: resources provide no special support for federated search
 - only a search interface
- Different environments require different solutions

- Objective: to gather information about what each resource contains
 - but, ultimately to inform resource selection
- Discussion: what sources of evidence could we use to do this?

using content

 Term frequencies: selection based on the query-collection similarity

 A set of "typical" docs: selection based on the predicted relevance of sampled documents

using manually-issued queries

 Manually-issued queries: selection based on query-query similarity portal interface

using previous retrievals

Automatically issued queries: exhaustive selection based on merge query-query similarity quer portal interface

using content

Problem: in an uncooperative environment resources provide only a search interface

portal

interface

 Term frequencies: selection based on the query-collection similarity

 A set of 'typical' docs: selection based on the predicted relevance of sampled documents

Query-based Sampling (Callan and Connell, 2001)

- Repeat N times (e.g., N=100),
 - 1. submit a query to the search engine
 - 2. download a few results (e.g., 4)
 - 3. update the collection representation (e.g., term frequencies)
 - 4. select a new query for sampling (e.g., from the emerging representation)

Query-based Sampling

- Discussion: suppose we want to represent resources using term frequency information, how many samples do we need?
- Hint: zipf's law states that the number of <u>new</u> terms seen in each additional document decreases exponentially

Query-based Sampling (Callan and Connell, 2001)

 After 500 docs we've seen enough vocabulary to account for about 80-90% all term occurrences

Query-based Sampling

(Callan and Connell, 2001)

 The ordering of terms (by frequency) based on sample set statistics approximates the actual one

Query-based Sampling

Extensions

- Adaptive sampling: sample until rate of unseen terms decreases below threshold (Shokouhi et al., 2006)
 - slight improvement
- Sampling using (popular) query-log queries
 - web query-log (Shokouhi *et al.*, 2007), resource-specific query-log (Arguello *et al.*, 2009)
- Re-sampling to avoid stale representations
 - re-sampling according to collection size is a good heuristic (Shokouhi *et al.*, 2007b)

Resource Selection

- Objective: deciding which resources to search given a user's query
- Most prior work casts the problem as <u>resource ranking</u>
 - given a query, select the $k \ll n$ collections that produce good merged results
 - k is given (an interesting research problem)

Resource Selection

- Content-based methods: score resources based on the similarity between the query and content from the resource
 - large vs. small document models
- Query-similarity methods: score resources based on the effectiveness of previously issued queries that are similar to the query (will be covered at high level)

using content

 Term frequencies: selection based on the query-collection similarity

 A set of 'typical' docs: selection based on the predicted relevance of sampled documents

Large Document Models

 Represent each resource (or its samples) as a single "large document"

Large Document Models

- 1. Given the query, rank "large documents" using functions adapted from document retrieval
- 2. Select the top *k*

Large Document Models

• CORI (Callan, 1995)

$$CORI_{w}(C_{i}) = b + (1 - b) \times \frac{df_{w,i}}{df_{w,i} + 50 + 150 \times \frac{col len}{avg_col len}} \times \frac{\log\left(\frac{|\mathcal{C}| + 0.5}{cf_{w}}\right)}{\log(|\mathcal{C}| + 1.0)}$$

adapted from BM25

$$P(w|d) = b + (1 - b) \times \frac{tf}{tf + 0.5 + 1.5 \times \frac{doc_len}{avg_doc_len}} \times \frac{\log\left(\frac{N + 0.5}{df}\right)}{\log(N + 1.0)}$$

Large Document Models

KL-Divergence (Xu and Croft 1999)

$$KL_q(C_i) = \sum_{w \in q} P(w|q) \log \left(\frac{P(w|q)}{P(w|C_i)} \right)$$

• Query Likelihood (Si et al., 2002)

$$P(q|C_i) = \prod_{w \in q} \lambda P(w|C_i) + (1 - \lambda)P(w|G)$$

Large Document Models

Discussion: potential limitations?

Resource Representation

using content

 Term frequencies: selection based on the query-collection similarity

• A set of 'typical' docs: selection based on the predicted relevance of sampled documents

ReDDE (Si and Callan, 2003)

 Combine samples in a centralized index, keeping track of which collection each sample came from

ReDDE (Si and Callan, 2003)

centralized sample index

Given a query, conduct a retrieval from the centralized sample index

ReDDE (Si and Callan, 2003)

centralized sample index

 Use a rank-based threshold to predict a set of relevant samples

ReDDE (Si and Callan, 2003)

scale factor(
$$C_i$$
) = $\frac{|C_i|}{|S_i|}$

 Assume that each relevant sample represents some number of relevant documents in its original collection

ReDDE (Si and Callan, 2003)

scale factor(
$$C_i$$
) = $\frac{|C_i|}{|S_i|}$

"Scale-up" sample retrieval

ReDDE (Si and Callan, 2003)

scale factor(
$$C_i$$
) = $\frac{|C_i|}{|S_i|}$

"Scale-up" sample retrieval

ReDDE (Si and Callan, 2003)

"Scale-up" sample retrieval

ReDDE (Si and Callan, 2003)

- 1. Score collections by their <u>estimated</u> number of relevant documents
- 2. Select the top *k*

scale factor(
$$C_i$$
) = $\frac{|C_i|}{|S_i|}$

Small Document Models ReDDE Variants

- ReDDE can be viewed as a voting method: each (predicted) relevant sample is a vote for its collection
- Discussion: potential limitations?

Small Document Models ReDDE Variants

- ReDDE can be viewed as a voting method: each (predicted) relevant sample is a vote for its collection
- Discussion: potential limitations?
 - sensitivity to threshold parameter: samples that are more relevant (i.e., ranked higher) should get more votes (Shokouhi, 2007; Thomas, 2009)
 - a resource may not retrieve its relevant documents: samples from resources predicted to be more reliable should get more votes (Si and Callan, 2004)
- No ReDDE variant outperforms another across all experimental testbeds

Resource Selection ReDDE vs. CORI

- ReDDE wins: it never does worse and often does better
- ReDDE outperforms CORI when the collection size distribution is skewed
 - CORI is biased towards small, topically-focused collections
 - favors collections that are proportionately relevant
 - misses large collections with many relevant documents

Resource Selection

content-based methods

• Resource relevance as a function of content relevance

Resource Selection query-similarity methods

Key assumption: similar queries retrieve similar results

Resource Selection query-similarity methods

- Select resources based on their <u>expected retrieval</u> <u>effectiveness</u> for the given query
- Requires two components:
 - 1. retrieval effectiveness: a way to determine that a previously seen query produced an effective retrieval from the resource
 - 2. query-similarity: a way to predict that a new (unseen) query will retrieve similar results from the resource

(Voorhees et al., 1995)

 Training phase: did the resource retrieve relevant documents?

e.g., use human relevance judgements

(Arguello et al., 2008)

 C_3

Training phase:
 did the resource
 retrieve relevant
 documents?

 e.g., use retrievals that merge content from every resource

56

exhaustive

merge

training query

 Training phase: did the resource retrieve relevant documents?

 Test phase: were the most similar training queries effective on the resource?

 Test phase: were the most similar training queries effective on the resource?

Combining the results from multiple resources (i.e, those selected) itno a single merged ranking

Assumption: an interleaving of documents is a suitable presentation of results

Naive Interleaving

 Merge results heuristically (e.g., round robin)

Naive Interleaving

Problem:
 rank 7 from C₁
 may be more
 relevant than
 rank 3 from C₃.
 why?

• what other option do we have?

Results Merging Score Normalization

- Scores from different resources are not comparable
- Transform
 <u>resource-specific</u>
 scores into
 <u>resource-general</u>
 scores

Results Merging CORI-Merge (Callan *et al.*, 1995)

Combine <u>resource ranking</u> and <u>document ranking</u> scores

$$S_C(D) = \frac{S_i'(D) + 0.4 \times S_i'(D) \times S'(C_i)}{1.4}$$

$$S_i'(D) = \frac{S_i(D) - S_i(D_{\min})}{S_i(D_{\max}) - S_i(D_{\min})}$$

$$S'(C_i) = \frac{S(C_i) - S(C_{\min})}{S(C_{\max}) - S(C_{\min})}$$

Results Merging SSL (Si and Callan, 2003)

centralized sample index

Results Merging SSL (Si and Callan, 2003)

centralized sample index

- Assumption: centralized sample index scores are directly comparable
 - same ranking/scoring algorithm
 - same IDF values
 - same document-length normalization

• Objective: given a query, transform C_1 scores to values that are comparable across collections

• Step 1: identify the overlap documents

 Step 2: use these pairs of document-scores to learn a linear transformation from C₁ scores to CSI scores

Results Merging SSL (Si and Callan, 2003)

- Step 2: use these pairs of document scores to learn a linear transformation from C_1 to CSI scores
- Standard linear regression (query and collection specific)

$$S_C(q,d) = a \times S_i(q,d) + b$$

$$\arg\min_{a,b} \sum_{d} \left(\left(f(a,b,\mathcal{S}_i(q,d)) - \mathcal{S}_C(q,d) \right)^2 \right)$$

overlap documents (query and collection specific)

Federated Search Summary

- QBS produces effective collection representations
 - ~500 docs are enough, doesn't require cooperation
- Small document models > large document models
 - But, both assume an effective retrieval
- Query-based methods avoid this by modeling the expected retrieval using previous retrievals
 - But, require training data. or, Do they?
- Centralized sample index scores are "resource-general"
 - learn a regression model to re-score and merge

Vertical Aggregation

pittsburgh

Search

maps

Ingram Pittsburgh Crafton Mt Washington Carson Sw Mt Oliver Map data ©20 f0 Google

Pittsburgh, PA maps.google.com

Fineview

web

City of Pittsburgh, Pennsylvania - Pghgov.com 🕾 🔍

Official city site including information on economic development, resident information, links, tourism and contact information.

www.city.pittsburgh.pa.us/ - Cached - Similar

Images for pittsburgh - Report images

images

web

Pittsburgh - Wikipedia, the free encyclopedia 🕾 🔍

Pittsburgh is the second-largest city in the U.S. Commonwealth of Pennsylvania and the county seat of Allegheny County. Regionally, it anchors the largest ...

History of Pittsburgh - Neighborhoods - List of people from the Pittsburgh ... - 1936 en.wikipedia.org/wiki/Pittsburgh - Cached - Similar

Books for pittsburgh

<u>Pittsburgh: a sketch of its early social life</u> - Charles William Dahlinger - 1916 - 216 pages
<u>Pittsburgh: 1758-2008</u> - Pittsburgh Post-Gazette, Carnegie Library of Pittsburgh - 2008 - 128 pages
Pittsburgh: 17582008 surveys the citys evolution from strategic fort in the wilderness ...

books.google.com

books

References

- J. Arguello., F. Diaz, and J. Callan. (2009). Sources of evidence for vertical selection. In SIGIR.
- J. Callan, Z. Lu, and W.B. Croft. (1995). Searching distributed collections with inference networks. In SIGIR.
- J. Callan and M. Connell. (2001). Query-based sampling of text databases. In TOIS.
- L. Gravano, C. Chang, H. Garcia-Molina, and A. Paepcke. (1997). STARTS. In SIGMOD.
- L. Si and J. Callan. (2003). Relevant document distribution estimation method for resource selection. In SIGIR.
- L. Si, R. Jin, J. Callan, and P. Ogilvie. (2002). Language modeling framework for resource selection and results merging. In CIKM.
- M. Shokouhi. (2007). Central rank-based collection selection in uncooperative distributed information retrieval. In ECIR.
- M. Shokouhi, M. Baillie, and L. Azzopardi. (2007). Updating collection representations for federated search. In SIGIR.
- P. Thomas and M. Shokoui. (2009). SUSHI: Scoring scaled samples for server selection. In SIGIR.
- J.Xu and W. B. Croft. (1999). Cluster-based language models for distributed retrieval. In SIGIR