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Up to this point...

• Classic information retrieval

‣ search from a single centralized index

‣ all queries processed the same way

• Federated search

‣ search across multiple distributed collections

‣ a.k.a: resources, search engines, search services, etc.
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• Some content cannot be crawled and centrally 
indexed (exposed only via a search interface)

‣ also referred to as “the hidden web”

• Even if crawl-able, we may prefer searchable access to 
this content via the third-party search engine. why?

‣ content updated locally

‣ unique document representation (e.g., metadata)

‣ customized retrieval

Motivation
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Federated Search Examples
(World Wide Science)
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• Exhaustive search (across all collections)
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Federated Search Examples
(World Wide Science)
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...

...Federated Search Examples
(World Wide Science)
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...

...

most results from a few 
collections!

Federated Search Examples
(World Wide Science)
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Federated Search Examples
(Vertical Aggregation in Web Search)

Thursday, November 17, 16



portal 
interface

C1

C2

C3

...
Cn

Federated Search
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merged 
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• Exhaustive search
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portal 
interface
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Federated Search

10query

merged 
ranking

• Some collections 
do not retrieve 
any results

• Most of the top 
results come from 
a few collections

Cn
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11query
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ranking

• We can often 
satisfy the user 
with results from 
only a few 
collections

• Why?
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• Similar documents are relevant to similar information 
needs

‣ used in cluster-based retrieval

‣ document score normalization

‣ pseudo-relevance feedback

‣ federated search

The Cluster Hypothesis
(van Rijsbergen, 1979)
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• Objective: given a query, predict which few collections 
have relevant documents and combine their results 
into a single document ranking

Federated Search
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Federated Search
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Resource representation

Resource selection

Results merging

at query-time

off-line 

Thursday, November 17, 16



portal 
interface

C1

C2

C3

...
Cn

15

• Gathering 
information about 
what each 
resource contains

• What types of 
information needs 
does each 
resource satisfy?

Federated Search
Resource Representation
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• Deciding which 
few resources to 
search given a 
user’s query

Federated Search
Resource Selection
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portal 
interface

17query

C1

C2

...
Cn

merged 
ranking

C3

• Combining their 
results into a 
single output

Federated Search
Results Merging
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resource representation

resource selection

results merging

Federated Search
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at query-time

off-line 
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Cooperative vs. Uncooperative
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• Cooperative environment

‣ assumption: resources provide accurate and 
complete information to facilitate selection and 
merging

‣ centrally designed protocols and APIs

• Uncooperative environment

‣ assumption: resources provide no special support 
for federated search

‣ only a search interface 

• Different environments require different solutions
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Resource Representation
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Resource Representation
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• Objective: to gather information about what each 
resource contains 

‣ but, ultimately to inform resource selection

• Discussion: what sources of evidence could we use to 
do this?
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• Term frequencies: 
selection based on 
the query-collection 
similarity
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Resource Representation
using content

portal 
interface

query

C1

C2

C3

...
Cn

• A set of “typical” docs: 
selection based on the 
predicted relevance of 
sampled documents
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portal 
interface

query
23

Resource Representation
using manually-issued queries

...

C1

C2

C3

...
Cn

• Manually-issued queries: 
selection based on 
query-query similarity
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Resource Representation
using previous retrievals

portal 
interface

query

C1

C2

C3

...
Cn

• Automatically 
issued queries: 
selection based on 
query-query 
similarity

exhaustive 
merge
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Resource Representation
using content

portal 
interface

query

C1

C2

C3

...
Cn

• Term frequencies: 
selection based on 
the query-collection 
similarity

• A set of ‘typical’ docs: 
selection based on the 
predicted relevance of 
sampled documents

• Problem: in an 
uncooperative 
environment 
resources provide 
only a search 
interface
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• Repeat N times (e.g., N=100),

1. submit a query to the search engine

2. download a few results (e.g., 4)

3. update the collection representation (e.g., term 
frequencies)

4. select a new query for sampling (e.g., from the 
emerging representation)

Query-based Sampling
(Callan and Connell, 2001)

Thursday, November 17, 16



27

• Discussion: suppose we want to represent resources 
using term frequency information, how many samples 
do we need?

• Hint: zipf’s law states that the number of new terms 
seen in each additional document decreases 
exponentially

Query-based Sampling
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• After 500 docs we’ve seen enough vocabulary to 
account for about 80-90% all term occurrences
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CACM: ~ 3K docs
WSJ88: ~40K docs
TREC-123: ~1M docs

ctf ratio: % of 
collection 
“covered” by 
the observed 
terms

Query-based Sampling
(Callan and Connell, 2001)
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• The ordering of terms (by frequency) based on sample 
set statistics approximates the actual one
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(Callan and Connell, 2001)
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• Adaptive sampling: sample until rate of unseen terms 
decreases below threshold (Shokouhi et al., 2006)

‣ slight improvement

• Sampling using (popular) query-log queries

‣ web query-log (Shokouhi et al., 2007),       
resource-specific query-log (Arguello et al., 2009)

• Re-sampling to avoid stale representations

‣ re-sampling according to collection size is a good 
heuristic (Shokouhi et al., 2007b)

Query-based Sampling
Extensions
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Resource Selection
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Resource Selection
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• Objective: deciding which resources to search given a 
user’s query

• Most prior work casts the problem as resource ranking

‣ given a query, select the k ≪ n collections that 
produce good merged results

‣ k is given (an interesting research problem)
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Resource Selection
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• Content-based methods: score resources based on the 
similarity between the query and content from the 
resource

‣ large vs. small document models

• Query-similarity methods: score resources based on 
the effectiveness of previously issued queries that are 
similar to the query (will be covered at high level)
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Resource Representation
using content

portal 
interface

query

C1

C2

C3

...
Cn

• Term frequencies: 
selection based on 
the query-collection 
similarity

• A set of ‘typical’ docs: 
selection based on the 
predicted relevance of 
sampled documents
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Large Document Models
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...

docdocdocdocdocdoc

resources

docdocdocdocdocdocdocdocdoc

docdocdocdocdocdoc

docdocdoc

docdocdoc

docdocdocdoclarge
doc

large document index

• Represent each resource (or its samples) as a single          
“large document”
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Large Document Models
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docdocdocdoc

large document index
R

!
q

query

1. Given the query, rank “large documents” using 
functions adapted from document retrieval

2. Select the top k

large
doc
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Large Document Models
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• CORI (Callan, 1995)

CORIw(Ci) = b + (1 − b) ×
dfw,i

dfw,i + 50 + 150 × col len
avg col len

×
log

(

|C|+0.5
cfw

)

log(|C| + 1.0)

P (w|d) = b + (1 − b) ×
tf

tf + 0.5 + 1.5 × doc len
avg doc len

×
log

(

N+0.5
df

)

log(N + 1.0)

• adapted from BM25
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Large Document Models
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KLq(Ci) =
∑

w∈q

P (w|q) log

(

P (w|q)

P (w|Ci)

)

P (q|Ci) =
∏

w∈q

λP (w|Ci) + (1 − λ)P (w|G)

• KL-Divergence (Xu and Croft 1999)

• Query Likelihood (Si et al., 2002)
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Large Document Models
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• Discussion: potential limitations?

docdocdocdoclarge 
doc

large document index
R

!
q

query
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Resource Representation
using content

portal 
interface

query

C1

C2

C3

...
Cn

• Term frequencies: 
selection based on 
the query-collection 
similarity

• A set of ‘typical’ docs: 
selection based on the 
predicted relevance of 
sampled documents
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...

docdocdocdocdocdoc

docdocdocdocdocdocdocdocdoc

docdocdocdocdocdoc

centralized sample index

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdoc

docdocdoc

• Combine samples in a centralized index, keeping track 
of which collection each sample came from

∪
n

i=1Si

resources

sample

Small Document Models
ReDDE (Si and Callan, 2003)
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centralized sample index

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

query

R
s

q

• Given a query, conduct a retrieval from the centralized 
sample index

Small Document Models
ReDDE (Si and Callan, 2003)
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centralized sample index

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

query

R
s

q

relevant

not 
relevant

τ

• Use a rank-based threshold to predict a set of relevant 
samples

Small Document Models
ReDDE (Si and Callan, 2003)
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R
s

q

scale factor(Ci) =
|Ci|

|Si|

• Assume that each relevant sample represents some 
number of relevant documents in its original collection

τ

Small Document Models
ReDDE (Si and Callan, 2003)

4 C1

C2

C3

Cn

...
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R
s

q

• “Scale-up” sample retrieval

τ

Small Document Models
ReDDE (Si and Callan, 2003)
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Small Document Models
ReDDE (Si and Callan, 2003)
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• “Scale-up” sample retrieval
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R
s

q

τ

Small Document Models
ReDDE (Si and Callan, 2003)
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scale factor(Ci) =
|Ci|

|Si|
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Cn

• “Scale-up” sample retrieval
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Small Document Models
ReDDE (Si and Callan, 2003)

4
6

4

6
4

9

1. Score collections by 
their estimated 
number of relevant 
documents

2. Select the top k

scale factor(Ci) =
|Ci|

|Si|
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C3

Cn
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12
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Small Document Models
ReDDE Variants

• ReDDE can be viewed as a voting method: each 
(predicted) relevant sample is a vote for its collection

• Discussion: potential limitations?
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Small Document Models
ReDDE Variants

• ReDDE can be viewed as a voting method: each 
(predicted) relevant sample is a vote for its collection

• Discussion: potential limitations?

‣ sensitivity to threshold parameter: samples that are 
more relevant (i.e., ranked higher) should get more 
votes (Shokouhi, 2007; Thomas, 2009)

‣ a resource may not retrieve its relevant documents: 
samples from resources predicted to be more 
reliable should get more votes (Si and Callan, 2004)

• No ReDDE variant outperforms another across all 
experimental testbeds

Thursday, November 17, 16



51

Resource Selection
ReDDE vs. CORI

• ReDDE wins: it never does worse and often does better

• ReDDE outperforms CORI when the collection size 
distribution is skewed

‣ CORI is biased towards small, topically-focused 
collections

‣ favors collections that are proportionately relevant

‣ misses large collections with many relevant 
documents
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R
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query

R
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docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc
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docdocdocdocdoc

small doc models

docdocdocdoclarge
doc

large doc models

query

• Resource relevance as a function of content relevance

Resource Selection
content-based methods
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Resource Selection
query-similarity methods

• Key assumption: similar queries retrieve similar results
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Resource Selection
query-similarity methods

• Select resources based on their expected retrieval 
effectiveness for the given query

• Requires two components:

1. retrieval effectiveness: a way to determine that a 
previously seen query produced an effective retrieval 
from the resource

2. query-similarity: a way to predict that a new 
(unseen) query will retrieve similar results from the 
resource
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• e.g., use human 
relevance 
judgements
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C1

C2

C3

...
Cn

query
training query

• Training phase: 
did the resource 
retrieve relevant 
documents?

Query-Similarity Methods
(Voorhees et al., 1995)
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• e.g., use retrievals 
that merge 
content from 
every resource
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C1

C2

C3

...
Cn

query
training query

exhaustive 
merge

• Training phase: 
did the resource 
retrieve relevant 
documents?

Query-Similarity Methods
(Arguello et al., 2008)
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q
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q
q

q
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q

q
q

q
q

q

q

training queriesC1

• Training phase: did 
the resource retrieve 
relevant documents?

Query-Similarity Methods
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q
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q
q

q
q

q

q

q
q

q
q

q

q

q

training queries

test query

C1

• Test phase: were the 
most similar training 
queries effective on 
the resource?

Query-Similarity Methods
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C3

q

q

q
q

q
q

q

q

q
q

q
q

q

q

q

training queries

test query

• Test phase: were the 
most similar training 
queries effective on 
the resource?

Query-Similarity Methods
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Results Merging
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61query

merged 
ranking

C1

C2

...
Cn

C3

• Combining the 
results from 
multiple resources 
(i.e, those 
selected) itno a 
single merged 
ranking

Results Merging
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62query

C1

C2

...
Cn

merged 
ranking

C3

Results Merging

• Assumption: an 
interleaving of 
documents is a 
suitable 
presentation of 
results
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63query

C1

C2

...
Cn

merged 
ranking

C3

Results Merging
Naive Interleaving

• Merge results 
heuristically (e.g., 
round robin)    
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64query

C1

C2

...
Cn

C3

• Problem:        
rank 7 from C1 
may be more 
relevant than  
rank 3 from C3. 
why?

• what other option 
do we have?

merged 
ranking

Results Merging
Naive Interleaving
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65query

C1

C2

...
Cn

C3

• Scores from 
different resources 
are not 
comparable

• Transform 
resource-specific 
scores into 
resource-general 
scores

Results Merging
Score Normalization
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Results Merging
CORI-Merge (Callan et al., 1995)

• Combine resource ranking and document ranking scores

S
′(Ci) =

S(Ci) − S(Cmin)

S(Cmax) − S(Cmin)

S
′

i(D) =
Si(D) − Si(Dmin)

Si(Dmax) − Si(Dmin)

SC(D) =
S′

i(D) + 0.4 × S′

i(D) × S′(Ci)

1.4
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...

docdocdocdocdocdoc

docdocdocdocdocdocdocdocdoc

docdocdocdocdocdoc

docdocdoc

docdocdoc

resources

sample

Results Merging
SSL (Si and Callan, 2003)

centralized sample index

docdocdocdoc

docdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

doc doc
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• Assumption: centralized sample index scores are 
directly comparable

‣ same ranking/scoring algorithm

‣ same IDF values

‣ same document-length normalization

Results Merging
SSL (Si and Callan, 2003)

query

R
s

q

centralized sample index

docdocdocdoc

docdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

doc doc

SC(q, d)
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• Objective: given a query, transform C1 scores to values 
that are comparable across collections

Results Merging
SSL (Si and Callan, 2003)

C1query

query
docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

centralized sample index
R

s

q

R
1

q

SC(q, d)

S1(q, d)
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• Step 1: identify the overlap documents

Results Merging
SSL (Si and Callan, 2003)

C1query

query
docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc
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docdocdocdocdoc

centralized sample index
R
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SC(q, d)

S1(q, d)
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• Step 2: use these pairs of document-scores to learn a 
linear transformation from C1 scores to CSI scores

Results Merging
SSL (Si and Callan, 2003)

C1query

query
docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

docdocdocdocdoc

centralized sample index
R

s

q

R
1

q

SC(q, d)

S1(q, d)
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Results Merging
SSL (Si and Callan, 2003)

• Standard linear regression (query and collection specific)

• Step 2: use these pairs of document scores to learn a 
linear transformation from C1 to CSI scores

overlap documents      
(query and collection specific)

SC(q, d) = a × Si(q, d) + b

arg min
a,b

∑

d

(

(

f(a, b,Si(q, d)
)

− SC(q, d)
)2
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• QBS produces effective collection representations 

‣ ~500 docs are enough, doesn’t require cooperation

• Small document models > large document models

‣ But, both assume an effective retrieval

• Query-based methods avoid this by modeling the expected 
retrieval using previous retrievals

‣ But, require training data. or, Do they?

• Centralized sample index scores are “resource-general”

‣ learn a regression model to re-score and merge

Federated Search Summary
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Vertical Aggregation
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