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Up to this point...

e (lassic information retrieval
» search from a single centralized index

» all queries processed the same way

® Federated search

» search across multiple distributed collections

» a.k.a: resources, search engines, search services, etc.
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Motivation

e Some content cannot be crawled and centrally
indexed (exposed only via a search interface)

» also referred to as “the hidden web”

e Even if crawl-able, we may prefer searchable access to
this content via the third-party search engine. why?

» content updated locally
» unique document representation (e.g., metadata)

» customized retrieval
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Federated Search Examples
(World Wide Science)

e Exhaustive search (across all collections)

lemurs | Search |

Enter Search Term(s) view participants as list

INTERACTIVE MAP

Click on region to zoom in
on participating countries.
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Federated Search Examples
(World Wide Science)

TECHHCLESIES

by
Refine Search lemurs m Advanced Search WEI:I

Search: Full Record: lemurs ) 62 of 62 sources complete
301 ranked results of 1,625 available Create an alert from this search o,/ 2y of All Results | ’
Results 1 - 10 0f 301 Sort by: | Rank ‘3] Limitto: Al Sources B 12345 [

1 Lemurs - Ambassadors for Madagascar
ok Thalmann, Urs

Madagascar Conservation & Development  2006-01-01

ER
Directory of Open Access Journals (Sweden)

2 The dental comb of lemurs
wiokok - Roberts, D.
UK PubMed Central

Digital Repository Infrastructure Vision for European Research {DRIVER)

3 The Placentation of Lemurs
ik Turner

UK PubMed Central

Digital Repository Infrastructure Vision for European Research {DRIVER)

4 OQObject permanence in lemurs.
Wik Deppe, Anja M.

Vascoda (Germany)
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Federated Search Examples
(World Wide Science)

Summary of All Results for this Search
Mational Library of Latvia v

Mational Library of the
Refine Search lemurs m Advanced Search Czech Republic v
Manuscriptorium
Search: Full Record: lemurs Croat lert f thi h Nepal Journals Online W
301 ranked results of 1,625 available ~redie 2 aferrom TS search Summary of All Results (Nepal)
¢ — Ly = Morwegian Open Research
Results 1 —100f 301 Sortby: Rank ‘3] Limitto: Al Sources B 123 Archives (NORA) "4
OpenSIGLE v
1 Lemurs - Ambassadors for Madagascar Philippines Journals Online %
ko Thalmann, U._"S (Philippines)
adagascar Conservation & Development  2006-01-01 Science.gov (United States)
= Scientific Electronic Library v
Directory of Open Access Journals (Sweden) Online (Argentina)
Scientific Electronic Library v
) Online (Brazil)
The dental comb of lemurs - o
—— Scientific Electronic Library .
mm Rdﬂéef‘ffr *’li’- Online (Chile) v
- = &S Scientific Electronic Library v
Digital Repository Infrastructure Vision for European Research (DRIVER) Dnllmel {cﬂmmbla], _
Scientific Electronic Library v
Online (Cuba)
ik - Tumner Online (Mexico)
UK PubMed Central Scientific Electronic Library v
; Online (Portugal)
Digital Repository Infrastructure Vision for European Research (DRIVER) Scientific Electronic Library v
Online (Spain)
Scientific Electronic Library v
4 QObject permanence in lemurs. Online (Venazuela)
Wik Deppe, Anja M.
BAFEA Ml M A A A .
Vascoda (Germany) °
o
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Federated Search Examples
(World Wide Science)

Summary of All Results for this Search
Mational Library of Latvia 14 3

Mational Library of the

Refine Search " duanced Search Czech Republic v 0
Manuscriptorium

. : Mepal Journals Online 7
Search: Full Record: lemurs Y 0
301 ranked results of 1,625 available m OSt reS U ItS frO m a feW (Nepal) v
Morwegian Open Research __»
Results 1 — 10 of 301 I I . ' 23 Archives (NORA) W 0
collections! e o

Philippines Journals Online

L | oL

Madagascar Conservation & Uevelopment  2006-01-01

W
Directory of Open Access Journals (Sweden) Online (Argentina)

Scientific Electronic Library - g
, Online (Brazil) v
The dental comb of lemurs - _
—— Scientific Electronic Library -
UK PubM Rdﬂger?' F' Online (Chile) v 0
- ~ene Scientific Electronic Library v 0
Digital Repository Infrastructure Vision for European Research (DRIVER) Gn,“nE, {Cﬂmmbla],
Scientific Electronic Library - g
Online (Cuba) v
3 The Placentation of Lemurs Scientific Electronic Library _» 4
Joiciok - Turner Online (Mexico)
UK PubMed Central Scientific Electronic Library v 0

Online (Portugal)

Digital Repository Infrastructure Vision for European Research (DRIVER) Scientific Electronic Library v 0

Online (Spain)

Scientific Electronic Library - g
4 QObject permanence in lemurs. Online (Venezuela) v
Wik Deppe, Anja M.
L e W e T T i T s W W o T O I | .
Vascoda (Germany) o
7
o

Thursday, November 17, 16



maps

web

Images

web

books

Federated Search Examples
(Vertical Aggregation in Web Search)

| pittsburgh

Pittsburgh, PA maps.google.com

Ki A ~ —
O '* ——
cks l -\ Fineview 4 East -
Sheraden j;
il
Ingram N Shadyside ‘
“wPittsburgh ...
Crafton . :

@W.‘r Washington S eeu  Ed

Carson
Sv

Mt Oliver

D BT S
&o@m Ran Ar MWW‘M

- -——

City of Pittsburgh, Pennsylvania - Pghgov.com
Official city site including information on economic development, resident information, links,

tourism and contact information.
www.city.pittsburgh.pa.us/ - Cached - Similar

Images for pittsburgh - Report images

Pittsburgh - Wikipedia, the free encyclopedia

Pittsburgh is the second-largest city in the U.S. Commonwealth of Pennsylvania and the
county seat of Allegheny County. Regionally, it anchors the largest ...

History of Pittsburgh - Neighborhoods - List of people from the Pittsburgh ... - 1936
en.wikipedia.org/wiki/Pittsburgh - Cached - Similar

Books for pittsburgh
Pittsburgh: a sketch of its early social life - Charles William Dahlinger - 1916 - 216 pages

Search

Pittsburgh:: 1758-2008 - Pittsburgh Post-Gazette, Carnegie Library of Pittsburgh - 2008 - 128 pages

Pittsburgh: 17582008 surveys the citys evolution from strategic fort in the wilderness ...
books.google.com
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e Exhaustive search

portal
interface

Federated Search

@-E
G =
@-=

(%

8-=

merged
ranking

<
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Federated Search

e Some collections o
do not retrieve »=_
any results — meLged
ranking
® Most of the top — —
results come from »=_

a few collections < ’

portal .
interface .
2= @

<

10
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Federated Search

e \We can often
satisfy the user
with results from
only a few
collections

e \Why?

portal o
interface .

merged
ranking
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The Cluster Hypothesis
(van Rijsbergen, 1979)

e Similar documents are relevant to similar information
needs

» used in cluster-based retrieval
» document score normalization
» pseudo-relevance feedback

» federated search

12
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Federated Search

e Objective: given a query, predict which few collections
have relevant documents and combine their results
into a single document ranking

13
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Federated Search

Resource representation
Resource selection

Results merging

|4
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gzg—

portal
interface

Federated Search
Resource Representation

l e (athering
. information about
I what each

resource contains

e What types of
information needs
does each
resource satisfy?

[
[
: o o o
[
\

’-

|5
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Federated Search
Resource Selection

® Deciding which
few resources to
search given a
user’s query

portal
interface

-3

IHE I BN I BN IS IS B BN B B B B B B B B s

16
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Federated Search
Results Merging

¢ Combining their
results into a

single output

portal
interface

-3

-@ @

merged
ranking

=)

---------'
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Federated Search

resource representation

at query-time

18

Thursday, November 17, 16



Cooperative vs. Uncooperative

e (ooperative environment

» assumption: resources provide accurate and
complete information to facilitate selection and
merging

» centrally designed protocols and APIs
e Uncooperative environment

» assumption: resources provide no special support
for federated search

» only a search interface

e Different environments require different solutions

19
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Resource Representation
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Resource Representation

e (Objective: to gather information about what each
resource contains

» but, ultimately to inform resource selection

e Discussion: what sources of evidence could we use to
do this?

21
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cu-A

Resource Representation

portal
interface

using content

SImi

® Ase

prec

e Term frequencies:
selection based on
the query-collection

larity

I//

t of “typica

icted relevance of

Sam

hled documents

docs:
selection based on the
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query-query similarity

ou-A

Resource Representation

using manually-issued queries

¢ Manually-issued queries:
selection based on

—

)

.

il

T
-y

portal
interface

-0

(k|
=l
e

] |
53

oy | | J "
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Resource Representation

using previous retrievals
e Automatically < g
issued queries: »
selection based on _u merge
query-query > g
similarity _u »

exhaustive

|
j%llllll

portal
interface
& - BN

v ¥
iy

0 e

24
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Resource Representation
using content

e Problem: in an
uncooperative
environment
resources provide
only a search
interface

portal
interface

o bl

0 a0

e Term frequencies:
selection based on
the query-collection
similarity

A set of ‘typical’ docs:

selection based on the
predicted relevance of

Sam

hled documents

25
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Query-based Sampling

(Callan and Connell, 2001)

® Repeat N times (e.g., N=100),

1.
2.
3.

submit a query to the search engine
download a few results (e.g., 4)

update the collection representation (e.g., term
frequencies)

. select a new query for sampling (e.g., from the

emerging representation)

26
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Query-based Sampling

® Discussion: suppose we want to represent resources
using term frequency information, how many samples

do we need?

e Hint: zipf’'s law states that the number of new terms
seen in each additional document decreases

exponentially

27
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Query-based Sampling

(Callan and Connell, 2001)

1.0
0.9
0.8

ctf ratio: % of %7
0.6

collection 05
“covered” by g4
the observed 03

terms 0.2
0.1

0.0

ctf ratio

- =— - CACM: ~ 3K docs
— WSJ88: ~40K docs
TREC-123: ~1M docs

I I I I |
0 100 200 300 400 500
Number of documents examined

(a)

e After 500 docs we've seen enough vocabulary to
account for about 80-90% all term occurrences

28
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Query-based Sampling

(Callan and Connell, 2001)

1.0 —
0.9 -

0.8 - =
0.7 e
0.6 o

0.5 H! CACM: ~ 3K docs
0.4 H — WSJ88: ~40K docs
03 |- ==+ TREC-123: ~1M docs

0.2 —
0.1

0.0 | | | | |
0 100 200 300 400 50C

Number of documents examined

(b)

e The ordering of terms (by frequency) based on sample
set statistics approximates the actual one

Spearman Rank Correlation
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Query-based Sampling

Extensions

e Adaptive sampling: sample until rate of unseen terms
decreases below threshold (Shokouhi et al., 2006)

» slight improvement

e Sampling using (popular) query-log queries

» web query-log (Shokouhi et al., 2007),
resource-specific query-log (Arguello et al., 2009)

e Re-sampling to avoid stale representations

» re-sampling according to collection size is a good
heuristic (Shokouhi et al., 2007b)

30
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Resource Selection
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Resource Selection

® Objective: deciding which resources to search given a
user’s query

® Most prior work casts the problem as resource ranking

» given a query, select the k « n collections that
produce good merged results

» Kk is given (an interesting research problem)

32
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Resource Selection

e (Content-based methods: score resources based on the

similarity between the query and content from the
resource

» large vs. small document models

e Query-similarity methods: score resources based on
the effectiveness of previously issued queries that are
similar to the query (will be covered at high level)

33
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cu-A

Resource Representation

portal
interface

using content

SImi

® Ase

prec

e Term frequencies:
selection based on

the query-collection

larity

t of ‘typical’ docs:

selection based on the

icted relevance of

Sam

hled documents
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Large Document Models

® Represent each resource (or its samples) as a single
“large document”

35




Large Document Models

large document index

-> ->

B~

gEEE =EE =EHI BN =N =N BN =N =N = =
a4 - - - - O S S S S .

————————————

1. Given the query, rank “large documents” using
functions adapted from document retrieval

2. Select the top k

36
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Large Document Models

e CORI (Callan, 1995)

C]+0.5
N df w i log ( fu )
CORI,(C;) =b+ (1 —b) x

X
df i + 50 + 150 x —<collen log(|C| 4 1.0)

avg_col_len

e adapted from BM25

] N-+0.5
Plw|d) = b+ (1 - b) x 2 o5 ()

X
tf+ 0.5+ 1.5 x —doclen log(N + 1.0)

avg_doc_len
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Large Document Models

e KL-Divergence (Xu and Croft 1999)

Plw
= 2 Plwlg)log (Pév\‘gf))

weq

e Query Likelihood (Si et al., 2002)

P(q|C;) H AP(w|C;) + (1 — A\ P(w|G)

weq

38
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Large Document Models
® Discussion: potential limitations?

large document index

- -

gEEE =EE =EI =EN =N =N BN =N =N = =
- E- - - - - O S S S .

————————————

1~

39
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cu-A

Resource Representation

portal
interface

using content

e Term frequencies:
selection based on
the query-collection

SImi

® Ase

larity

t of ‘typical’ docs:

selection based on the

prec

icted relevance of

Sam

hled documents
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Small Document Models
ReDDE (Si and Callan, 2003)

resources

----------

/

¢ Combine samples in a centralized index, keeping track
of which collection each sample came from

41




Small Document Models
ReDDE (Si and Callan, 2003)

centralized sample index

=)

4

&

<

a4 - - - - O S S S S .

e Given a query, conduct a retrieval from the centralized
sample index

42
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Small Document Models
ReDDE (Si and Callan, 2003)

centralized sample index

=)

relevant

»_ T
| not

relevant

Ml

gEEE =EE =EHI BN =N =N BN =N =N = =
a4 - - - - O S S S S .

e Use a rank-based threshold to predict a set of relevant

samples

43
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Small Document Models
ReDDE (Si and Callan, 2003)

Ci

scale factor(C;) = S|

il

® Assume that each relevant sample represents some
number of relevant documents in its original collection .,
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Small Document Models
ReDDE (Si and Callan, 2003)

4
6

N\

il

ﬂ

Ci
S

scale factor(C;) =

e “Scale-up” sample retrieval

45
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Small Document Models
ReDDE (Si and Callan, 2003)

4

6
4

N
i

scale factor(C})

e “Scale-up” sample retrieval

46
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Small Document Models
ReDDE (Si and Callan, 2003)

=4

— 0

R; /1_=——4
— —> e O
Td\=4
o =9

scale factor(C;) =

e “Scale-up” sample retrieval

47
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Small Document Models
ReDDE (Si and Callan, 2003)

1. Score collections by =4
their estimated — ()
number of relevant ===
documents —

— O

2. Select the top k —P

——F

scale factor(C;) =

48
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Small Document Models
ReDDE Variants

® ReDDE can be viewed as a voting method: each
(predicted) relevant sample is a vote for its collection

® Discussion: potential limitations?

49
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Small Document Models
ReDDE Variants

® ReDDE can be viewed as a voting method: each
(predicted) relevant sample is a vote for its collection

® Discussion: potential limitations?

» sensitivity to threshold parameter: samples that are

more relevant (i.e., ranked higher) should get more
votes (Shokouhi, 2007; Thomas, 2009)

) aresource may not retrieve its relevant documents:
samples from resources predicted to be more
reliable should get more votes (Si and Callan, 2004)

¢ No ReDDE variant outperforms another across all
experimental testbeds

50
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Resource Selection
ReDDE vs. CORI

e ReDDE wins: it never does worse and often does better

e ReDDE outperforms CORI when the collection size
distribution is skewed

4

CORI is biased towards small, topically-focused
collections

favors collections that are proportionately relevant

misses large collections with many relevant
documents

51
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Resource Selection
content-based methods

-> ->

large doc models

=)

v

IR MENAR-

<

e Resource relevance as a function of content relevance

52
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Resource Selection
query-similarity methods

e Key assumption: similar queries retrieve similar results

lemur pictures Search
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Resource Selection
query-similarity methods

e Select resources based on t

neir expected retrieval

effectiveness for the given query

® Requires two components:

1. retrieval effectiveness: a

way to determine that a

previously seen query produced an effective retrieval

from the resource

2. query-similarity: a way to predict that a new
(unseen) query will retrieve similar results from the

resource

54
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Query-Similarity Methods
(Voorhees et al., 1995)

e Training phase:
did the resource
retrieve relevant
documents?

»
o3

1/< _

® e.g., use human
relevance
judgements

2y

training query

oy by
Iy
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Query-Similarity Methods
(Arguello et al., 2008)

e Training phase:
did the resource
retrieve relevant
documents?

exhaustive

=
®
-
o
L D

® e.g., use retrievals
that merge
content from
every resource

2y

training query 56

<

@ a0
A
R
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Query-Similarity Methods

e Training phase: did 3
the resource retrieve *
4 q
relevant documents? q
4 &
q v q
q

" training queries
q

Q¥

A
q

57
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Query-Similarity Methods

® Test phase: were the g -
most similar training ) g q
queries effective on \(; q
the resource? 4 &£ test query
q « 4
q
-
“ training queries ®
q q
A 4
49 9

Q¥

58
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Query-Similarity Methods

"4
Test phase: were the G - 2
most similar training \5 q
queries effective on 27‘ q
the resource? * * \ test query
I o 9
q
-
u training queries ®
q q
A4 4
£ 49 9
q

59
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Results Merging
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Results Merging

¢ Combining the
results from

multiple resources
(i.e, those
selected) itho a
single merged
ranking

& - (-

,- | | | | | | | | | | | | | | | | | Ny

merged
ranking

=)

IHE I I I BN IS IS B B B B B B B B B B s
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Results Merging

® Assumption: an

interleaving of — »=
documents is a = merged

. ki
suitable "
presentation of m—
results » =

@@=

& - (-
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Results Merging

Naive Interleaving

® Merge results

heuristically (e.g., — »=
round robin) —— merged

ranking

=)

@@=

& - (-
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Results Merging

Naive Interleaving

e Problem:
rank 7 from C;
may be more
relevant than
rank 3 from Cs.
why?

merged
ranking

e what other option
do we have?

2 _E—_
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Results Merging

e Scores from
different resources

Score Normalization

are not
comparable

e Transform
resource-specific
scores Into

@-=

resource-general
scores

2 E—_

@-=

65
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Results Merging
CORI-Merge (Callan et al., 1995)

¢ Combine resource ranking and document ranking scores

+ 0.4 X X
5o () — S+ 0.4 < GHED) ~ (D

66
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Results Merging
SSL (Si and Callan, 2003)

resources

----------

centralized sample index




Results Merging
SSL (Si and Callan, 2003)

centralized sample index

-> -»

e Assumption: centralized sample index scores are
directly comparable

SC(Q? d)

AN

<

gEEE =EE =EI =EN =N =N BN =N =N = =
- E- - - - - O S S S .

» same ranking/scoring algorithm

» same IDF values

» same document-length normalization
68
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Results Merging
SSL (Si and Callan, 2003)

- @ -

centralized sample index

=)

IR NIRTRY -

S1 (Cb d)

<

SC(Q7 d)

® (Objective: given a query, transform C; scores to values
that are comparable across collections

69
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Results Merging
SSL (Si and Callan, 2003)

- @ -

centralized sample index

-» ->

gEEE =EE =EHI BN =N =N BN =N =N = =
a4 - O - O O S S S S .

e Step 1: identify the overlap documents

| 1= 1

v

S1 (CL d)

SC(CL d)

70
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Results Merging
SSL (Si and Callan, 2003)

R
- =
* “ » | | S1(g, d)
—
centralized sample index
.
» » =1 Sc(q, d)

v

® Step 2: use these pairs of document-scores to learn a

linear transformation from C; scores to CS/ scores )
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Results Merging
SSL (Si and Callan, 2003)

® Step 2: use these pairs of document scores to learn a
linear transformation from C;to CS/ scores

e Standard linear regression (query and collection specific)

Sclq, d) = a x Si(q,d) + b

arg min ((f(a,b, Si(q,d)) — Sc(q, d))Q

72
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Federated Search Summary

e (BS produces effective collection representations

» ~500 docs are enough, doesn’t require cooperation
e Small document models > large document models

» But, both assume an effective retrieval

e Query-based methods avoid this by modeling the expected
retrieval using previous retrievals

» But, require training data. or, Do they?

I//

® Centralized sample index scores are “resource-genera

» learn a regression model to re-score and merge

73
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Vertical Aggregation

pittsburgh

Pittsburgh, PA

maps.google.com

Search

Lees '\
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Crafton . &
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City of Pittsburgh, Pennsylvania - Pghgov.com

Official city site including information on economic development, resident information, links,

tourism and contact information.

www.city.pittsburgh.pa.us/ - Cached - Similar

Images for pittsburgh - Report images

Pittsburgh - Wikipedia, the free encyclopedia

Pittsburgh is the second-largest city in the U.S. Commonwealth of Pennsylvania and the
county seat of Allegheny County. Regionally, it anchors the largest ...

History of Pittsburgh - Neighborhoods - List of people from the Pittsburgh ... - 1936
en.wikipedia.org/wiki/Pittsburgh - Cached - Similar

Books for pittsburgh

Pittsburgh: a sketch of its early social life - Charles William Dahlinger - 1916 - 216 pages
Pittsburgh:: 1758-2008 - Pittsburgh Post-Gazette, Carnegie Library of Pittsburgh - 2008 - 128 pages

Pittsburgh: 17582008 surveys the citys evolution from strategic fort in the wilderness ...
books.google.com
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