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Linear Interpolation
Review

score(Q, D) =
n

∏
i=1

(λP(qi|D) + (1 − λ)P(qi|C))

• P(qi|D) = probability given to query term qi by the 
document language model

• P(qi|C) = probability given to query term qi by the 
collection language model
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Linearly Interpolated Smoothing
Review

• Doc 1: haikus are easy

• Doc 2: but sometimes they don’t make sense

• Doc 3: refrigerator

• Query: haikus make sense

(source: threadless t-shirt)

score(Q, D) =
n

∏
i=1

(λP(qi|D) + (1 − λ)P(qi|C))
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• The query likelihood model has a more theoretic 
motivation than I’ve portrayed so far

Let’s Take A Step Back
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Bayes’ Law

P(A|B) =
P(B|A) × P(A)

P(B)
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Bayes’ Law

(source: wikipedia)
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Bayes’ Law Derivation

P(A|B) =
P(B|A) × P(A)

P(B)

P(A, B) = P(A|B) × P(B)

P(A, B) = P(B|A) × P(A)

P(A, B) = P(A, B)

P(A|B) × P(B) = P(B|A) × P(A)
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Bayes’ Law Applied to Ranking

P(D|Q) =
P(Q|D) × P(D)

P(Q)
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Bayes’ Law Applied to Ranking

P(D|Q) =
P(Q|D) × P(D)

P(Q)

If we’re scoring and ranking 
documents based on this formula, 

which number doesn’t matter?
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Query-likelihood Retrieval Model

P(D|Q) =
P(Q|D) × P(D)

P(Q)

P(D|Q) ∝ P(Q|D) × P(D)

• Dividing every document score by the same number 
doesn’t change the ranking of documents ...

• So, we can ignore the denominator P(Q)

query-likelihood score 
(you already know this)

document prior
(new concept)
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Document Prior

• The document prior, P(D), is the probability that the 
document is relevant to any query

• It is a document-specific probability

• It is a query-independent probability

P(D|Q) ∝ P(Q|D) × P(D)

query-likelihood score 
(you already know this)

document prior
(new concept)
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Document Prior

• Unknowingly, so far we’ve assumed that P(D) is the 
same for all documents

• Under this assumption, the ranking is based only on the 
query-likelihood given the document language model

• Now, we will assume that P(D) is not uniform

• That is, some documents are more likely to be relevant 
independent of the query

P(D|Q) ∝ P(Q|D) × P(D)

query-likelihood score 
(you already know this)

document prior
(this is a new concept)
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Document Prior
P(D|Q) ∝ P(Q|D) × P(D)

• What is it?

• Anything that affects the likelihood that a document is 
relevant to any query

‣ document popularity 

‣ document authority 

‣ amount of content (e.g., length)

‣ topical cohesion

‣ really, you decide ... 
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Document Prior
P(D|Q) ∝ P(Q|D) × P(D)

• But, it is a probability, so in a collection of M 
documents...

M

∑
i=1

P(Di) =?
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Document Prior
P(D|Q) ∝ P(Q|D) × P(D)

• Not that difficult...

P(Dj) =
score(Dj)

∑
M
i=1

score(Di)
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Document Prior
P(D|Q) ∝ P(Q|D) × P(D)

• What is it?

• Anything that affects the likelihood that a document is 
relevant to any query

‣ document popularity 

‣ document authority 

‣ amount of content (e.g., length)

‣ topical cohesion

‣ really, you decide ... 
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Document Popularity

• Given user-interaction data, we can determine the 
popularity of a document based on clicks

• Click-rate:

# of clicks on the document

# of clicks on any document
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rank URL P(URL) rank URL P(URL)

1 http://www.google.com 0.0204 11 http://www.geocities.com 0.0022

2 http://www.myspace.com 0.0093 12 http://www.hotmail.com 0.0022

3 http://mail.yahoo.com 0.0090 13 http://www.ask.com 0.0021

4 http://en.wikipedia.org 0.0066 14 http://www.bizrate.com 0.0017

5 http://www.amazon.com 0.0056 15 http://www.tripadvisor.com 0.0017

6 http://www.mapquest.com 0.0054 16 http://www.msn.com 0.0017

7 http://www.imdb.com 0.0053 17 http://profile.myspace.com 0.0016

8 http://www.ebay.com 0.0044 18 http://www.craigslist.org 0.0015

9 http://www.yahoo.com 0.0030 19 http://disney.go.com 0.0015

10 http://www.bankofamerica.com 0.0027 20 http://cgi.ebay.com 0.0015

Document Popularity
most clicked urls - aol query-log (2006)
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rank URL P(URL) rank URL P(URL)

1501087 http://www.live4soccer.com 0.0000 1501097 http://www.toymod.com 0.0000

1501088 http://www.smalltowngallery.com 0.0000 1501098 http://www.aaabarcodes.com 0.0000

1501089 http://1239.8wmc5l.info 0.0000 1501099 http://www.stubaidirect.com 0.0000

1501090 http://silverjews.lyrics-online.net 0.0000 1501100 http://rtbknox.no-ip.biz 0.0000

1501091 http://www2.glenbrook.k12.il.us 0.0000 1501101 http://www.panontheweb.com 0.0000

1501092 http://www.palmerschools.org 0.0000 1501102 http://4395.bsxnf57.info 0.0000

1501093 http://
www.rainbowridgefarmequestriancenter.com

0.0000 1501103 http://www.calco.com 0.0000

1501094 http://mncable.net 0.0000 1501104 http://www.sharpe.freshair.org 0.0000

1501095 http://www.modem-software.com 0.0000 1501105 http://www.opium.co.za 0.0000

1501096 http://www.clevelandrugby.com 0.0000 1501106 http://grediagnostic.ets.org 0.0000

Document Popularity
least clicked urls - aol query-log (2006)
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Document Popularity

http://www.unc.edu http://www.unc.edu/about/history-traditions

• URL depth 

‣ website entry-pages tend to be more popular than 
those that are deep within the domain

• Count the number of “/” in the URL
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Document Authority
• Number of “endorsements”

‣ scientific search: number 
of citations in other papers

‣ web search: number of 
incoming hyperlinks

‣ blog search: number user-
generated comments

‣ twitter search: number of 
followers

‣ review search: number of 
times someone found the 
review useful
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Document Authority
• “HUB” score

‣ scientific search: number 
citations of other papers

‣ web search: number of 
outgoing hyperlinks

‣ blog search: number of 
links to other bloggers

‣ twitter search: number of 
people followed by author

‣ review search: number of 
reviews written by the 
reviewer
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Topical Focus

• Example: blog retrieval

• Objective: favor blogs that focus on a coherent, 
recurring topic

• How might we do this? (HINT: vector space model)

time

blog posts
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Topical Focus

vector representation of 
entire blog (all posts)

• Example: blog retrieval

• Objective: favor blogs that focus on a coherent, 
recurring topic

• How might we do this? (HINT: vector space model)
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Topical Focus

• How might we do this? (HINT: vector space model)

• Compute average cosine similarity between the posts 
and the entire blog

vector representation of 
entire blog (all posts)

vector representations 
of individual posts
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Topical Focus

• How might we do this? (HINT: vector space model)

• Compute average cosine similarity between the posts 
and the entire blog

vector representation of 
entire blog (all posts)

vector representations 
of individual posts
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Document Prior
P(D|Q) ∝ P(Q|D) × P(D)

• What is it?

• Anything you want.

‣ document popularity 

‣ document authority 

‣ amount of content (e.g., length)

‣ topical focus

‣ really, you decide
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What document priors would you use?
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Remember Smoothing?

• YOU: Are there mountain lions 
around here?

• YOUR FRIEND: Nope.

• YOU: How can you be so sure?

• YOUR FRIEND: Because I’ve 
been hiking here five times 
before and have never seen one.

• MOUNTAIN LION: You should 
have learned about smoothing 
by taking INLS 509. Yum!
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• When estimating probabilities, we tend to ...

‣ Over-estimate the probability of observed outcomes

‣ Under-estimate the probability of unobserved 
outcomes

• The goal of smoothing is to ...

‣ Decrease the probability of observed outcomes 

‣ Increase the probability of unobserved outcomes

• Smoothing P(D) is very important!

Remember Smoothing?
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Example: Click-Rate

# of clicks on the document

# of clicks on any document

• Do we really want to always give documents that have 
never been clicked a score of zero?

• How could we smooth this probability?

P(D|Q) ∝ P(Q|D) × P(D)
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Example: Click-Rate

# of clicks on the document

# of clicks on any document

• Do we really want to always give documents that have 
never been clicked a score of zero?

• Add-one smoothing!

P(D|Q) ∝ P(Q|D) × P(D)

(# of clicks on the document) + 1

(# of clicks on any document) + (# of documents)
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