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Abstract
Background: Modern, high-throughput biological experiments generate copious, heterogeneous,
interconnected data sets. Research is dynamic, with frequently changing protocols, techniques,
instruments, and file formats. Because of these factors, systems designed to manage and integrate modern
biological data sets often end up as large, unwieldy databases that become difficult to maintain or evolve.
The novel rule-based approach of the Ultra-Structure design methodology presents a potential solution
to this problem. By representing both data and processes as formal rules within a database, an Ultra-
Structure system constitutes a flexible framework that enables users to explicitly store domain knowledge
in both a machine- and human-readable form. End users themselves can change the system's capabilities
without programmer intervention, simply by altering database contents; no computer code or schemas
need be modified. This provides flexibility in adapting to change, and allows integration of disparate,
heterogenous data sets within a small core set of database tables, facilitating joint analysis and visualization
without becoming unwieldy. Here, we examine the application of Ultra-Structure to our ongoing research
program for the integration of large proteomic and genomic data sets (proteogenomic mapping).

Results: We transitioned our proteogenomic mapping information system from a traditional entity-
relationship design to one based on Ultra-Structure. Our system integrates tandem mass spectrum data,
genomic annotation sets, and spectrum/peptide mappings, all within a small, general framework
implemented within a standard relational database system. General software procedures driven by user-
modifiable rules can perform tasks such as logical deduction and location-based computations. The system
is not tied specifically to proteogenomic research, but is rather designed to accommodate virtually any
kind of biological research.

Conclusion: We find Ultra-Structure offers substantial benefits for biological information systems, the
largest being the integration of diverse information sources into a common framework. This facilitates
systems biology research by integrating data from disparate high-throughput techniques. It also enables us
to readily incorporate new data types, sources, and domain knowledge with no change to the database
structure or associated computer code. Ultra-Structure may be a significant step towards solving the hard
problem of data management and integration in the systems biology era.
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Background
Biological research is an increasingly information-rich
endeavor, with complex, heterogeneous data being gener-
ated at rates that outstrip the ability to readily manage,
integrate, and analyze it. Experimental platforms like
mass spectrometry (MS)-based proteomics can produce
tens to hundreds of gigabytes of data in a single run com-
prising less than two days of machine time. A wide variety
of similarly prodigious experimental approaches are in
use by biologists. There are also a large and growing
number of publicly accessible repositories for biological
information, the largest being GenBank, UniProt,
Ensembl, and the UCSC Genome Browser. Each of these
resources may contribute critical knowledge or data
toward solving a biological research problem, but inte-
grating their diverse structures and data types into a uni-
fied analysis remains very difficult.

One of our research endeavors that has encountered these
issues is proteogenomic analysis of the human genome.
This uses proteomic data to examine the translation of
RNAs to proteins on a genome-wide scale. We use compu-
tational techniques to map peptide-based MS data to their
encoding genomic loci (GFS [1]). The approach is used to
reveal alternatively spliced or frameshifted translation
products that cannot be readily found by standard pro-
teomic analysis methods. This project involves the meld-
ing of several data sources that are large and
heterogenous: MS-based proteomic data, genome
sequences, gene annotation sets, SNP sets, and more. Each
MS data set may contain 105 or more individual spectra
that must be analyzed in the context of one or more
human genome sequences, each containing 109 nucle-
otides, along with multiple gene, EST, cDNA, and gene
prediction annotation sets. Multiple spectral datasets are
used, and they are available in a variety of formats
depending on the source.

Not only are data sets heterogeneous and unwieldy, but
the sources and types of data available often change as
technology progresses. Add to these the frequent changes
in file formats, analysis approaches, and pipelines, all of
which contribute to the steep challenges to maintaining
an information management platform. And change can
go deeper than just new instruments or technologies
employed; often, biological concepts change through
time. For example, the concept of "gene" has undergone
many changes since Mendel, and is currently experiencing
another such change [2]. When biological concepts
change, information systems built to those concepts must
often undergo extensive modification, raising the specter
of extensive software maintenance. For individual labs
pursuing systems and genomic research, this is a daunting
task.

When we set out to build an information system for the
proteogenomic mapping project, these considerations led
us to examine new means for managing, integrating, and
analyzing project information. We discovered an intrigu-
ing approach developed by Jeff Long, called "Ultra-Struc-
ture", which employs a relational database system with a
non-standard schema and code development approach to
deal with issues of heterogeneity, complexity, and change
[3,4]. This approach views all systems, regardless of their
complexity, as the product of the "animation" of (some-
times large sets of) relatively simple rules (stored in a data-
base), not unlike Wolfram's much more recent claims to
"A New Kind of Science" [5]. However, unlike Wolfram's
approach, Long's approach is oriented towards practical
problem solving, and has for more than twenty years been
applied to concrete challenges such as document analysis
for nuclear technologies [6] and management of busi-
nesses [3,4]. Additionally, Long has also successfully
experimented with its application to the representation of
music and the analysis of games. When we encountered
Ultra-Structure theory, it had not been applied to the bio-
medical and biological sciences, despite having properties
well-suited to these fields, such as its ability to adapt to
change and to integrate large heterogeneous datasets.

In this work, we examined whether Ultra-Structure could
be practically applied to our proteogenomic annotation
project, and then extended into other biological data
management and integration tasks. Initially, we main-
tained two separate systems for this project, one using a
traditional entity-relationship (ER) modeling approach,
and the second built using Ultra-Structure principles. This
allowed direct comparison of the approaches. While the
Ultra-Structure system is not limited to just one use (in
fact, we are already applying it to other uses), we focus
here on illustrative examples drawn primarily from our
proteogenomic annotation work.

The core of Ultra-Structure lies in expressing every piece of
knowledge, information, or data as a "rule". Rules are
managed in a standard relational database management
system (RDBMS), but are organized in a unique way
based on the concept of "ruleforms" (short for "rule for-
mat"). Each ruleform is a single table in the RDBMS, rep-
resenting a single syntactical structure for the rules it
contains. For example, a specific ruleform is used to
declare the existence of entities of biological interest in a
system (call them "BioEntities"), from small to large,
including cells, molecules, DNA, membranes, and test
tubes. All rules declaring BioEntities are then expressed
with identical syntax within this ruleform. Another type of
ruleform is then used to express relationships between
BioEntities. This BioEntity Network ruleform uses a spe-
cific syntactical form to express binary relationships such
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as "Protein ABC is-a Tyrosine Kinase" or "Adenosine is-a
Nucleoside". Each ruleform, while specific about the syn-
tactical structure of the rules it represents, is very general
with regard to the concepts those rules can be used to
model. In both of the aforementioned ruleforms, there is
nothing specific to any one field of biology encoded; they
could be used equally well to express rules related to
oncology research or proteogenomic annotation.

By representing everything about a system as rules
(including data, processes, and ontologies), aspects of a
system that are volatile are stored as data, rather than as
database structure or computer code. The programming
code implemented for a system, known as "animation
procedures", is general, operating at a high level on the
structure of the rules rather than their specific content. For
the example of BioEntities given above, any computer
code written to operate on a BioEntity operates on any
kind of BioEntity, not just those specific to a particular
research field.

The area of managing biological information and com-
plexity is an active one. Several projects have investigated
issues of database integration from the perspectives of
data warehousing (GUS [7], Atlas [8], BioWarehouse [9])
and database view integration (K2/Kleisli [7,10], TAMBIS
[11]). Some have utilized biological ontologies to manage
biological information (TAMBIS [11], SEMEDA [12]).
These warehousing approaches generally rely on the crea-
tion of a global schema, which is often large and complex,
and dependent on the changing schemas of the databases
they integrate. This can lead to negative consequences, as
Stein related regarding the implosion of the Integrated
Genome Database [13].

The "Semantic Web" is another approach to data integra-
tion that is gaining in popularity [14-16]. This approach
relies on open standards (e.g., RDF, OWL) to present data
and relationships in a consistent, machine-readable man-
ner. Automated procedures can traverse data relationships
across the Internet, allowing researchers (among others)
to access and integrate related information from around
the world [17]. Such semantic approaches are in a similar
vein as our work, attempting to find novel ways to effec-
tively deal with the vast amounts of biological data we are
faced with. Ultra-Structure differs from the Semantic Web
in that the latter is concerned with the machine-mediated
exchange of data, whereas Ultra-Structure is focused on
using a flexible rule-based system to manage local proc-
esses and data. Semantic web technologies could be over-
laid on top of an Ultra-Structure system, allowing outside
resources access to Ultra-Structure-managed data, thereby
taking advantage of both approaches.

Nadkarni and colleagues actively develop systems using
the alternative database design methodology known as

EAV/CR (Entity-Attribute-Value with Classes and Rela-
tionships [18-20]), which has similarities to Ultra-Struc-
ture. Like Ultra-Structure, EAV/CR systems offer an
insulation against change by storing volatile conceptual
and structural information as data. However, the Ultra-
Structure approach differs by also encoding information
about behavior and processes as well, something these
systems do not address. While our implementation stores
gigabytes of project data (expressed as rules), it also
implements processes such as the translation of an RNA
transcript to a protein molecule, encoding the rules of
translation (using several genetic codes) in the database.
We have begun constructing a workflow management
subsystem, tracking data analyses and processes using the
same database structures. When domain knowledge
about any of these processes changes, such as discovery of
new alternative genetic codes, database rules are readily
updated. Ultra-Structure is unique in this regard, as it can
deal with information management on a variety of scales,
including domain knowledge, experimental information,
and biological and laboratory processes.

Here we examine in more depth the application of Ultra-
Structure to proteogenomic mapping through the use of
concrete implementation examples.

Methods
Most approaches to information management model a
system in terms of the concrete objects and relationships
that are visible to the user or programmer. The perspective
of Ultra-Structure is that these surface-level features are
the results of ongoing, dynamic processes. These processes
generate the objects, relationships, and attributes that we
see as the outward manifestation of the system, and an
Ultra-Structure system attempts to model these funda-
mental processes. Ultra-Structure comes from a back-
ground of process philosophy [21], which holds that
processes, not objects, are the fundamental metaphysical
constructs of the world.

In modern biological research, the surface-level features
(kinds of objects, relationships between objects, etc.) are
continually changing. For example, in a little over 30
years, DNA sequencing methods have progressed from
early Maxam-Gilbert sequencing, through Sanger
sequencing, to microarray sequencing, on up through the
current state-of-the-art next-generation sequencing meth-
ods. When a database system is structured to directly mir-
ror the data types produced by a changeable technology
like this, it must be reconfigured each time the technology
changes, along with sometimes extensive changes to the
associated computer code. The result is that such data-
bases will grow in complexity until they suffer from signif-
icant maintenance challenges, at which point it may be
simpler to completely scrap the system and start over.
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To address this, Ultra-Structure introduces two primary
levels of abstraction between the database management
system and the "surface structure" that the user interacts
with to store, analyze, and visualize their project data: the
"deep structure" and the "middle structure" (Figure 1).
(There are lower levels of abstraction beyond deep struc-
ture that may be of interest for readers interested in prin-
ciples of notation [4,22].)

Below, we briefly cover the basics of the Ultra-Structure
implementation. Rather than a full exposition, we cover
further implementation details as part of the examples
shown in the "Results" section.

Rules
Rules are the core of Ultra-Structure, as they govern the
fundamental ongoing processes that create the system
being modeled. They are used to represent all changeable
aspects of the system, including data, operational proc-
esses, attributes, etc. For example, simple declarative rules
for objects in the system are shown in Figure 2.

In contrast to the "if/then" interpretation of rules in an
expert system, Ultra-Structure rules are interpreted as "if/
consider" constructs. When the conditions on the left-
hand side of a rule – known as "factors" – are met, the sys-
tem is instructed to consider the information of the right-
hand side – "considerations" – in subsequent processing.
This allows multiple rules to express considerations that
apply to a given antecedent; as a result, we may condition-
ally modify how rules are interpreted.

For instance, in our system, one rule may state that in gen-
eral, all sequence locations should be calculated relative
to the 5' end of a chromosome. But, another rule may
declare that short peptide sequences are declared relative
to the start of the coding sequence for a gene. When rules
are being interpreted, these two rules would present a con-
flict. However, since applicable rules are all considered
before selecting an outcome, other rules in the system can
influence processing, such as by defining an order of prec-
edence so that the rules related to peptide locations take
priority. While this has similarities to class inheritance in
object-oriented systems, it is readily modifiable. If we later
need to change the interpretation priority for rule types,
only one rule need be modified that tells the system how
to prioritize the considerations.

Rules are not completely free-form, though; they are sub-
ject to a variety of constraints, which are collectively
known as the "deep structure".

Deep Structure
The "deep structure" abstraction level is designed to repre-
sent those things about a domain that are fixed and
unchanging. Technically, the deep structure consists of the

syntactical and semantic forms for expressing rules rele-
vant to the application domain (the ruleforms), as well as
the associated computer code (animation procedures)
that manipulates those rules. Ruleforms specify all the
logically possible forms that a rule may take: "Ruleforms
are to collections of rules as numbers are to collections of
things. ... Ruleforms abstract morphology, while numbers
abstract quantity; in a sense, ruleforms model the geome-
try of rules." [3] In practice, ruleforms are implemented as
database tables: the ruleform itself is the table definition,
and individual rules that conform to that ruleform are
rows within that table. Factors are implemented as a pri-
mary key (or unique) constraint on the ruleform table;
considerations (including metadata, such as "update
date") are then the remainder of the columns of the table.
Standard database system query mechanisms can be lever-
aged to quickly find applicable factors (keys) for given sys-
tem inputs, and furthermore, modern database systems
can easily handle and query millions of rules. The rule-
form abstraction allows their use for many distinct func-
tions, while keeping the number of tables low and
comprehensible.

The development of ruleforms for a given domain comes
about from following an iterative development process,
starting with a high-level process-oriented perspective,
implementation, and refinement. Across broad domains
for which Ultra-Structure systems have been imple-
mented, typical systems utilize 50 or fewer ruleforms (and
hence database tables).

While ruleforms can prescribe the forms of all rules of a
system, the rules themselves are inanimate; they need to
be interpreted in order to produce the desired behavior of
the system. The primary feature of the associated anima-
tion procedures is that they are implemented in a general
way without detailed domain knowledge, allowing the
system to accommodate new information or procedures
without changing the underlying software. Since an Ultra-
Structure system encodes information as formal rules in a
database, including how rules are to be interpreted, this
simplifies the needs for animation procedures, so that
they must only deal with control logic, such as which rule-
forms to inspect and when, and how to get data into and
out of the system. Specific actions carried out by the soft-
ware are driven by the contents of the rules being operated
on; changing the rules changes the actions performed by
the system. As a result, animation procedure code will not
need to be changed as domain knowledge changes. In this
regard, the animation procedures of Ultra-Structure are
similar to the inference engines found in expert systems,
but differ in the fact that they access different tables for
different kinds of rules.

For example, one common need of many biological
research systems is to calculate spatial or structural rela-
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Abstraction layers of the Ultra-Structure approachFigure 1
Abstraction layers of the Ultra-Structure approach. The "deep structure" (bottom box) abstracts the fundamental con-
cepts of the system. It is implemented as tables in a standard relational database system. It serves to constrain the structure of 
rules that can be added to the system, known collectively as the "middle structure" (middle box). These rules, stored as rows 
in database tables, in turn drive the execution of generalized software code called "animation procedures", which act to gener-
ate the "surface structure", or the real world manifestation of the system (top box). It is this easily-perceived but constantly 
changing level of surface structure that is generally modeled in traditional ER design. The end user (shown at top) interacts 
with this aspect of the system.
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tionships between two items, such as whether a nucle-
otide is within a gene (and what gene that is), or how
close two amino acid residues are along a protein string.
In our system, an animation procedure deals with any
type of arbitrary spatial calculation on linear strings,
regardless of what type they are. The biology-specific cal-
culations, such as calculating all exons within a gene, are
determined by protocol rules in the system.

Together, the collection of ruleforms and the animation
procedures that operate on them constitute the deep struc-
ture of an Ultra-Structure system. In the case of our sys-
tem, we have implemented (and continue to refine) a
deep structure which aims to capture the fundamental
computational realities associated with biological
research.

An example of deep structure in our system arises from the
need to declare the existence of entities such as genes, pro-
teins, cells, samples, and amino acids. The BioEntity rule-
form from Figure 2 is an example of an "existential
ruleform", which is used to declare the existence of some
concept or entity in the system: the "things" the system

knows about. Our BioEntity ruleform defines things that
participate in biological processes, or are otherwise of bio-
logical interest. This includes a broad diversity of con-
cepts, from the isotope 14C and the third exon of the β-
catenin gene, to broad categories, such as "Non-Polar
Amino Acids". A group of BioEntities is itself considered a
proper BioEntity because it is subject to the same kinds of
rules; rules that apply to the group also apply to the mem-
bers of that group.

This ruleform defines the structure for rules declaring the
existence of biological entities of any kind. This is in con-
trast to a more standard RDBMS, where different types of
biological entities would typically be stored in separate
tables. Here, if a new type of biological entity comes into
play later, there is no change to the underling system; the
"BioEntity" ruleform can accommodate nearly any type of
thing we might care to declare and track in the system.

While the "things" in a pure entity-attribute-value system
might all be formally represented as generic "Entities" or
"Objects", this is not the case in an Ultra-Structure system;
everything in our universe of discourse is not a BioEntity.

Basic existential ruleformFigure 2
Basic existential ruleform. Ruleforms are tabular data structures that define the structure of rules. All columns of a rule-
form can be divided into factors and considerations, which roughly correspond to the antecedent and consequent, respec-
tively, of an "if/then"-style construction. Factors are the means by which rules are addressed and selected, and in practice are 
implemented as keys in a database system. The remainder of the columns are known as "considerations", and provide metadata 
about a rule, as well as additional information that may influence the ultimate processing of a rule. The ruleform shown here is 
a simplified version of the BioEntity ruleform, which is used to define the existence of concepts and entities that participate in 
various biological processes. It is also an example of an existential ruleform, which is used to declare the existence of entities in 
the system.

2008-01-01Ionized peptide in proteomic mass spectrometry experimentsPeptide Ion

Non-Polar Amino
Acid

Amino Acid whose side-chain group is non-polar 2008-01-01

2008-01-01

Update Date

2008-01-01

2008-01-01

2008-01-01

Human
Chromosome X

The female sex chromosome of Homo sapiens

Exon of �-Catenin containing GSK3� phosphorylation sites�-Catenin Exon 3

Glycine The simplest naturally occurring amino acid

Carbon-14
The isotope of carbon with 6 protons and 8 neutrons.  It is 

the basis for radiocarbon dating.

Name Description

Factor Considerations

BioEntity Ruleform
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Other existential ruleforms for our system are shown in
Table 1, and include foundational concepts such as
Resources, Attributes, Locations, and Units of measure-
ment.

In addition to the declared objects like BioEntities, there
can be a set of associated ruleforms that express attributes
for them. For example, in proteomic research, the masses
of molecules must be tracked. These can be expressed in
different ways, based on how isotope distributions are
accounted for, including "monoisotopic mass", "average
isotopic mass", or "most abundant isotopic mass". We
express this information using the BioEntity Attribute
ruleform shown in Figure 3a, which is based on Entity-
Attribute-Value design (EAV; also known as Object-
Attribute-Value, or OAV). The factors of this ruleform
include a BioEntity and an Attribute, the latter defined
with an existential ruleform shown in Figure 3b.
Attributes can track any kind of arbitrary information
about an entity. There are multiple consideration columns
present to effectively represent values of different data
types, but in this case, constraints ensure that only one
may be non-null, reflected by the "value type" considera-
tion of the Attribute ruleform. In addition to uncon-
strained columns containing numeric or text values (as
shown in Figure 3a), other columns may refer to other
existential ruleforms, allowing different types of existen-
tial entities to be related to one another. Each type of exis-
tential ruleform may have an associated Attribute
ruleform (e.g., Resource Attribute, Event Attribute).

Once an entity is declared to exist in an existential rule-
form, it can be combined with other entities to create new
"network" rules that express relationships between them.
Figure 4a shows a simplified example of a network rule-
form in our system. It expresses arbitrary binary relation-
ships between BioEntities using "subject/predicate/
object"-style triples, where "subject" and "object" can be
any entry represented in the BioEntity ruleform; the pred-
icate can be any relationship defined in the Relationship
existential ruleform (shown in Figure 4b). This network
ruleform can be used to specify which entities are the
members of a group, the group itself being a BioEntity. In
this framework, it is possible to build up networks, hierar-
chies, and relationships between a variety of entities eas-
ily. Users can directly add new Relationship rules to the
system to define whatever associations they might need,
without modifying the database structure itself.

Though omitted in the figures for clarity, several ruleforms
have an additional factor called "Resource", used for sys-
tem provenance. The BioEntity Attribute ruleform has a
Resource factor, which allows recording who declared the
average mass of carbon to be 12.0107 daltons, or which
MS analysis file contained the information that Peptide
Ion 123 has a charge value of 2. Since the Resource is a fac-
tor (and a rule's combined factors must be unique in that
ruleform), this allows the storage of potentially conflict-
ing information in separate rules. This addresses the fact
that information in scientific endeavors is often tentative
and/or integrated from a variety of sources. Otherwise,

Table 1: Existential Ruleforms

Ruleform Description Examples

BioEntity Things that participate in biological processes or are 
otherwise of biological interest

amino acids, chromosomes, gene annotations

Resource A source of information in the system people, lab groups, software, books, output files of computational 
analyses

Event Instances of some process or occurrence experiments, software invocations, biological processes

Attribute Facets of entities that are of in terest mass, length, atomic number, statistical scores, GenBank accession 
number

Relationship Binary relationships (predicates) that can exist 
between entities of the system

is-a, part-of, has-exon, overlaps

Location General idea of a location or address; where an entity 
can be found in a variety of spaces

genomic locations, lab freezer locations, intracellular locations, 
geographic coordinates

Location Context A location space; the framework in which a Location 
can sensibly be interpreted

18th draft human genome coordinate, 17th draft human genome 
coordinate, Giddings Lab freezer, Earth latitude and longitude

Unit A unit of measurement dalton, kilogram, meter

Several existential ruleforms (declaring the existence of various entities in the system) are described, with illustrative examples.
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information stored in the system would be limited to dog-
matic declarations of concrete fact. The Resource factor is
used wherever the declaration of data or rules may be ten-
tative, conflicting, or changing.

Other ruleforms in our system are used to define addi-
tional kinds of rules: "authorization rules" indicate what
combinations of information are valid or permitted;
"meta-rules" describe how to read other rules; and "proto-
col rules" specify sequences of actions and can be used to
implement complex processes and workflows.

Middle Structure
The next layer of abstraction, the "middle structure", can
best be thought of as representing the "laws" of the sys-
tem; that is, the specific rules and constraints that govern

a system's operation. The middle structure is the content
of the deep structure's ruleforms. This represents the types
of relationships that may occur between data in the sys-
tem, and the processes that data undergo during analysis
or query. In our system, the middle structure declares the
types of data kept about our biological research opera-
tions, the relationships between them, and the kinds of
operations that can occur on the data. Whenever proce-
dures, file formats, or data types change, the middle struc-
ture is changed to reflect this. Often the relevant database
system changes can be made by the non-programmer, by
modifying the database entries that comprise the rules of
the system. This puts the task of regular maintenance
more fully into the hands of the systems users, who are the
subject experts, rather than (usually) third-party program-
mers.

AttributesFigure 3
Attributes. Our Ultra-Structure system represents the various attributes of entities using ruleforms (tables) similar to these. 
Panel A: Simplified BioEntity Attribute ruleform. The factors include a BioEntity and an Attribute, while the considerations 
include columns in which typed values are stored. These rules can be read in plain English: "the average mass of carbon is 
12.0107 daltons", and so on. Panel B: Attribute ruleform. This existential ruleform is used to define various Attributes, similar 
to how the BioEntity ruleform defines BioEntities. The "Value Type" consideration is used to allow software procedures to find 
the appropriate value column for a particular Attribute. For instance, the fact that the "Average Mass" Attribute has a value 
type of "numeric" indicates that an animation procedure would look in the "Numeric Value" column of the BioEntity Attribute 
ruleform to find the average mass of Carbon.

A

B

Value Type

The mass of an element, ion or molecule calculated using 
the average mass of each element weighted for its natural 

isotopic abundance

Chemical Symbol

Name

numeric

text

integer

Description

The electrical charge carried by a single proton (or the 
negative charge carried by a single electron)

Common Name

The one- or two-letter code for a chemical element, as found 
in the periodic table

The name by which an entity is more commonly known

text

Charge

Average Mass

Factor Considerations

Units

Daltons

C

Human

Text
Value

Peptide Ion #123 Charge 2

Integer
Value

Numeric
Value

12.0107

Homo sapiens Common Name

Chemical SymbolCarbon

Carbon Average Mass

BioEntity Attribute

Factors Considerations

Attribute Ruleform

BioEntity Attribute Ruleform
Page 8 of 22
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:254 http://www.biomedcentral.com/1471-2105/10/254
In our system the middle structure encompasses BioEntity
rules defining various genome annotation sets, mass spec-
tra, and amino acids; Resource rules defining our GFS soft-
ware, genome annotation providers, and individual GFS
analysis output files; Location rules defining specific
regions of genomic sequence for annotations as well as
GFS-mapped peptide locations; and several others.
Another lab performing bacterial community analyses – a
wholly different research area – could take the same deep
structure, but instead populate the middle structure with
a separate set of rules, such as BioEntity rules defining
restriction enzymes and bacterial species, BioEntity Net-
work rules reflecting taxonomic relationships between

bacterial species, Events denoting specific analysis experi-
ments, and Locations representing lab freezer locations of
samples. We are in fact implementing a system for bacte-
rial community analysis with collaborators, using our
proteogenomic deep structure as a basis.

One brief example is in order. We regularly exploit the
concept of "overlap" between two sequences against a par-
ticular genome location, such as to find where peptides
overlap annotated exons or genes. The procedures for cal-
culating overlap are not part of the structure or code of the
system, since it reflects a specific use case; instead, it is rep-
resented by a small number of rules that are readily

Basic BioEntity Network and Relationship ruleformsFigure 4
Basic BioEntity Network and Relationship ruleforms. Panel A: The BioEntity Network ruleform (simplified for clarity) 
exemplifies network ruleforms by defining relationships between BioEntities. Here, "Subject" and "Object" both refer to BioEn-
tities, while "Relationship" refers to rules defined in the "Relationship" ruleform (Panel B). Each rule specifies a single binary 
relationship. The "Distance" consideration reflects how far away from each other in the network the two BioEntities are. In the 
rules shown, "Glycine" is two steps away from "Amino Acid", going first through "Non-Polar Amino Acid". Rules of distance 
greater than 1 are generated automatically via logical deduction. Panel B: The Relationship ruleform specifies all valid binary 
relationships that can exist between entities in the system. The "Inverse" consideration indicates the Relationship to use in the 
reverse formulation of a rule; for example, if "Carbon is-a Element", then "Element includes Carbon". The "Preferred" consid-
eration is a Boolean flag that indicates Relationships that are to be used when entering original (as opposed to automatically 
deduced) rules.
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changed or added to as demands warrant. Many other
Relationships besides simple "overlap" may be of interest,
such as "located downstream" or "contains"; these and
others can be defined by the end user. Ultimately, by not
over-specifying the deep structure of the system, users are
able to modify the middle structure to obtain the surface
structure they desire.

Surface Structure
In an Ultra-Structure system, the "surface structure" – the
actual appearance of the real-world system – is not explic-
itly modeled or stored anywhere; rather, animation proce-
dures driven by the content of the rule base (the middle
structure) generate it. Surface structure is volatile in bio-
logical research, where experimental protocols change,
new data types become available, and concepts are contin-
ually revised in light of new information. As a result,
information systems modeled on surface structure directly
are themselves volatile, lending to maintenance issues.

An example of surface structure generated by our system
can be seen in user interfaces derived from the combina-
tion of middle structure rules with general animation pro-
cedures. For example, when a user queries the system to
find a list of existing genomic annotations that position-
ally coincide with a peptide match from a tandem MS
(MS/MS) experiment, the Ultra-Structure system dynami-
cally generates the interface and resulting lists by examin-
ing its rules to determine what it means for genomic
regions to overlap, as well as what values should be que-
ried for and then returned to the user.

In our system, the surface structure is generated using ani-
mation procedures that interact with the RDBMS middle
and deep structure. Our system is built on the open source
PostgreSQL database server [23]. Animation procedures
are implemented as internal database procedures written
in either PL/pgSQL (a PostgreSQL-specific procedural lan-
guage) or SQL (though any of the several procedural lan-
guages available for PostgreSQL could be used), or as
client-side methods written in Java, using the Hibernate
[24] object-relational mapping (ORM) library, or a com-
bination of both. In general, animation procedures that
perform large amounts of database processing, or that
require a great deal of dynamic query generation are
implemented as internal database procedures, while sim-
pler procedures, and those whose execution requires con-
trol or data structures that are difficult to implement in the
database are performed on the client side. We are also
developing a web interface to the system using Stripes
[25], an open source web application framework for Java.
Examples of some prototype interfaces can be seen online
at http://bioinfo.med.unc.edu/ultrastructure. Some exam-
ple SQL queries are provided in Additional file 1 for inter-
ested readers. Prototype code for the system is also
provided in Additional file 2.

Results
At the beginning of this project, we developed the Ultra-
Structure system while also maintaining a traditional ER-
modeled database for the project. The latter was in place
until it became clear that the Ultra-Structure system would
reach sufficient utility for day-to-day use. The ER system
developed to contain 66 individual tables representing
everything from MS datasets to analysis results to various
genomic annotation datasets downloaded from UCSC's
genome resources [26]. The ER approach provided a quick
start-up due to our familiarity with it at the time, but as
the scope of the project evolved, shortcomings became
apparent. For instance, its structure assumed all annota-
tions and proteomic data had coordinates relative to a sin-
gle genome. The subsequent availability of multiple
genome drafts along with genomes of multiple individu-
als [27,28], necessitated substantial redesign, which
would have resulted in more tables to track and coordi-
nate all the different versions of genomes against annota-
tions and proteomic runs. Other shortcomings were more
fundamental; for example, it was necessary to build into
the ER model some fixed representation for a "gene".
However, the definition of a gene is changing as more is
uncovered about processes such as trans-splicing [29],
where one messenger RNA is produced by concatenating
exons from separate pre-mRNAs.

On the other hand, implementation of the Ultra-Structure
system was at first challenging, because the design process
required a new way of thinking that focused on separating
universal features of the system (such as the need to
declare the existence of biological entities), from the
changeable features (such as the need to query for exons
overlapping a given peptide sequence). The process has
been iterative; we started with a core of ruleforms (tables)
representing the basics such as BioEntities, networking of
BioEntities, Resources, and Events. As we began imple-
menting rules and features, we came upon the need for
new ruleforms, such as one representing Location infor-
mation, and another representing BioEntity Attributes. As
we have become more adept at the Ultra-Structure
approach, each refinement to the system has occurred
more quickly, and resulted in a more coherent design.

The resulting Ultra-Structure system stores all the data that
our original database could, and stores it in a more com-
prehensible manner, using fewer tables (approximately
40). We have translated procedures from large, complex
software functions into Ultra-Structure animation proce-
dures that are smaller, easier to comprehend, and driven
by rules in the database that can be altered to extend the
capabilities of the system. Using our proteogenomic
annotation project as an example, we describe the mode-
ling processes and considerations that we faced in transi-
tioning from a traditional ER-modeled system to one
based on Ultra-Structure. Rather than trying to be compre-
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hensive in the description of the system, we focus in on
several examples that illustrate the types of changes and
considerations made. Further detail can be gleaned by
examination of the system and documentation itself, pro-
totype code for which is attached as a Supplemental File.

Example 1: Modeling and implementing hierarchies of 
mass spectrometry data
Hierarchies are ubiquitous in biological research, both in
the subject of the research (proteins are made up of subu-
nits, which are made up of amino acids, which are made
up of functional groups, which are made up of atoms) and
in the artifacts of the research itself (experiments are bro-
ken down into subtasks, which are composed of individ-
ual steps). These can be represented with ER modeling
methods by creating a series of tables linked by integrity
constraints, with each table representing entities at succes-
sively deeper levels of the hierarchy. Mass spectrometry
data is naturally hierarchical, with an experiment usually
comprised of a group of separate LC-MS (liquid chroma-
tography-mass spectrometry) runs, each of which consists
of multiple spectra, which in turn are each comprised of
series of peaks (Figure 5a). Such data can be represented
in a standard ER design as shown in Figure 5b, where the
hierarchy of the data is mirrored by a hierarchy of tables
in the database. This has the benefit of being an intuitive
and relatively natural representation.

Ultra-Structure instead represents this hierarchy by
abstracting the concept of networks of BioEntities in a
general manner. A grouping of data points such as a spec-
trum is a BioEntity, as are each of the data points them-
selves (Figure 5c, upper left). The network itself is
implemented in a new ruleform (table), the BioEntity
Network (Figure 5c, upper right). This ruleform captures a
high level, general aspect of the system: that there exist
relationships between entities that participate in biologi-
cal processes or interactions. For the example of MS data,
we define a relationship using the Relationship ruleform
(Figure 4b) such as "has-precursor-ion", then use this to
relate each specific product ion with the specific precursor
ion it was derived from. In a similar way, we can use an
"included-in" Relationship to associate a particular run
with the dataset it is a part of.

These relationships existed in the ER-based system as for-
eign key constraints. However, a foreign key can only indi-
cate that data from one table has an association with data
from another table; it cannot formally and explicitly spec-
ify the nature of that relationship (e.g., that it represents a
"has-precursor-ion" relationship). In Ultra-Structure, the
relationship is encoded as data (i.e., as a rule) within the
middle structure of the system, providing explicit infor-
mation about the nature of the relationship to human
users and software. New relationships are created by add-

ing new rules to the Relationship ruleform, which are
immediately available for creating new rules in the BioEn-
tity Network ruleform. Nearly any arbitrary network of
BioEntities can be formed, without changing the database
structure. It is straightforward to group MS data in new
ways, for example to accommodate gel-based data instead
of LC-MS runs. In contrast, for the ER model, new repre-
sentations or hierarchy models are likely to involve chang-
ing the database schema itself, which in turn impacts the
computer code that interacts with it.

Each BioEntity (ions, runs, datasets, etc.) may have one or
more attributes. For example, ion peaks may have an
intensity and an associated mass, as well as an electrical
charge. We represent such attributes using a separate rule-
form, "BioEntity Attribute" (Figure 5c, bottom). Users can
make the system aware of new Attributes by adding the
appropriate rules in the Attributes ruleform (Figure 3b).
As such, the BioEntity Attribute ruleform can be used to
express the value of any Attribute of any BioEntity. This
attribute representation is similar to the EAV/CR approach
[18], but in the latter, the attributes of all kinds of objects
(regardless of their class) are represented using an identi-
cal table structure, whereas Ultra-Structure attribute tables
are tailored to each semantically distinct type of entity
(BioEntity, Resource, Event, etc.), reflecting fundamental
differences in their use in the system. For example, the
BioEntity Attribute ruleform has a Resource factor that
facilitates provenance, which may not be necessary for
Attributes on other kinds of objects.

Since Ultra-Structure ruleforms represent a higher-level
abstraction than ER-modeled tables, these three tables can
now be used to represent much more than just MS/MS
datasets. Indeed, the only things the original ER tables
could represent were MS/MS datasets; to begin using
another type of dataset would have required remodeling
the existing tables or adding new tables. This flexibility of
the Ultra-Structure approach will be demonstrated next.

Example 2: Representing genomic features
One aspect of our project is to map the MS-analyzed pep-
tide spectra to location(s) on one or more human genome
sequences, then correlate those locations with features
such as genes and exons that are part of publicly available
annotation sets.

Our ER database implemented a problem-specific table
structure, mirroring the MySQL database dumps from
UCSC [26], as shown in Figure 6a. We found this design
to have two limitations, illustrated in Figure 6b. First, the
table structure makes a specific assumption about the
types of information that must be recorded for a gene, and
how these are related to one another. If new features or
structures for a gene are uncovered, such as a new splicing
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Representing hierarchical information in Ultra-StructureFigure 5
Representing hierarchical information in Ultra-Structure. Panel A: conceptual representation of hierarchical informa-
tion. Briefly, a Dataset consists of multiple Runs, each of which has a number of Precursor Ions, which in turn can produce mul-
tiple Product Ions. Panel B: one possible schema for this hierarchy using traditional ER modeling. Each level of the hierarchy is 
represented by a separate table. Various attributes of entities are represented using a number of additional columns. The struc-
ture of the hierarchy (i.e., the inter-level links) are represented using foreign key relationships, shown here with arrows 
extending from the referring data to their referents. For instance, each Run is from a single Dataset (indicated by its "Dataset" 
column), while a single Dataset may have several Runs that refer to it. Panel C: reformulation of the same information using 
Ultra-Structure ruleforms. Entities at all levels of the hierarchy are declared in the BioEntity existential ruleform. The various 
attributes of each entity are represented by individual BioEntity Attribute rules. Finally, the structure of the hierarchy is 
declared using BioEntity Network rules. The specific nature of the links between entities is declared explicitly, using the appro-
priate Relationship. These same tables could be used to represent any other hierarchy of BioEntities, regardless of depth, 
whereas the traditional ER model would require as many tables as there are hierarchical levels. As mentioned earlier, the 
actual BioEntity Attribute and BioEntity Network ruleforms have an additional Resource factor (which in this case would be 
used to denote the particular data file the data come from) as well as additional considerations that are omitted here for sim-
plicity and clarity.
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regulator in an intron, then the table must be redesigned,
along with all the computer code written to interact with
it. Second, some features of a gene, such as introns, are not
made explicit in this model, but must be derived by calcu-
lations using other features. This makes it harder for a
human to review the source data in the database, and
makes errors in the data or the code that interprets the
data more likely.

The Ultra-Structure approach instead encourages taking a
step back and looking more generally at the problem of

representing annotation data. We implemented a solution
that took advantage of the existing ruleforms, considera-
bly streamlining the representation. At its core, the
approach declares that all annotations are simply BioEnti-
ties, such as "UCSC Known Gene Transcript Alignment
uc001fet.1 Exon 1" or "Ensembl Transcript
ENST00000002125 5' UTR". As such, the abstract entities
that the annotations represent (a particular exon, or a par-
ticular untranslated region) are declared independently of
specific coordinates in an arbitrary genome draft. This
facilitates both representational efficiency and biological

Different representations of genomic regionsFigure 6
Different representations of genomic regions. Panel A shows an entry from the Known Genes dataset from UCSC, 
using its native database structure. Here, "Tx" stands for "Translation" and "Cd" for "Coding"; thus "Tx Start" and "Tx Stop" 
define the bounds for the particular transcript's transcribed region, just as "Cd Start" and "Cd Stop" define a coding region. 
Panel B illustrates how various annotations of interest are represented using this data structure (the figure does not represent 
any particular gene, and is not to scale). The transcribed region and coding region are both explicitly defined, while untrans-
lated regions must be inferred. Exons are represented altogether differently, using arrays of start and stop positions. Introns 
must be inferred as regions lying between these exons. All these types of annotations are of interest to researchers, but the 
variety of representations used here pose challenges to querying. The data structure also assumes that all genes will fit this 
basic structure, which may not always be the case (e.g., trans-spliced genes can be composed of segments from different chro-
mosomes).
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interpretation, because some annotations can appear in
different drafts of a genome, and across genomes (e.g.,
mouse and human). In essence, this abstraction provides
an independent existence for the concepts associated with
particular genomic features. Researchers or computer
code can thus interact broadly and in a relational manner
with them, without having to reference specific genomic
coordinates, just as it is possible to talk about a building
on a university campus by name and relate it to nearby
buildings without having to refer to street addresses or
geographic coordinates.

Once established as BioEntities, annotations can then be
related to one another using BioEntity Network rules,
expressing that this exon is part of that transcript, for
example. We need only declare the types of relationships
that describe these connections. Using this representation,
we can easily maintain abstract groupings or hierarchies
of annotations that are biologically relevant. For example,
we use this to create a grouping for all annotations
belonging to the set of "Known Gene Annotations for
Human Genome Draft 18". We can also use it to create
groups such as "Human Genome Draft 18 Exons" or
"Transcripts Associated with Breast Cancer". Representing
all these open-ended grouping choices using a traditional
ER model requires additional tables and associated infra-
structure, while Ultra-Structure provides for this capability
with no further alterations of the database's schema.

Example 3: Representing genomic locations and positions
Our project also needs to express discrete genomic coordi-
nates for annotations and perform computations such as
determining which (if any) genes a particular peptide
occurs in. Our original ER system represented genomic
locations similarly to the UCSC tables, capturing the sur-
face structure of the problem in the database schema (e.g.,
a "genomic region" table with columns for specific
attributes such as "chromosome", "strand", "start", and
"stop").

In designing the Ultra-Structure representation for loca-
tions, our goal was an abstract and general representation
of locational information, flexible enough to represent
other types of location information besides genomic
regions. The result is a Location existential ruleform and
several accessory ruleforms (Figure 7) that can represent
many types of locations common to biological research:
subcellular organelles, motifs and regions in peptide
strands, test tubes in lab freezers, internet addresses of
datasets, and even word and concept locations within
journal articles and other text mining inputs.

The ruleform uses a consideration called "Context", which
is a reference to the Location Context ruleform, specifying
the frame of reference in which a specific Location is valid.

For instance, a genomic coordinate for the 18th draft of
the human genome can only be interpreted in the context
of the 18th draft; it makes no sense in the context of the
17th draft, since the underlying genome sequence is dif-
ferent. Similarly, the location of a test tube in a lab freezer
will not make sense for calculations on genomic coordi-
nates. The Location Context Attribute is then used to
define the coordinate space of Locations for a particular
context. For example, this allows specification that a
"Genomic Coordinate" context must define a "chromo-
some", "strand", "start position", and "stop position", or
that a "Freezer Location" context for protein samples is
defined in terms of "room", "freezer", "shelf", "rack",
"box", and "slot". The Location Attribute ruleform is then
used to store a specific Location's coordinates, using a
form similar to the BioEntity Attribute ruleform. For
example, "Genomic Location 100" is described by four
rule entries: one for chromosome (or "Base Sequence"),
one for directionality (or "Strand"), and one each for
"Start" and "Stop" positions, as seen in Figure 7b.

Specific Locations, such as "Genomic Location 100",
maintain a separate existence from any BioEntity that may
refer to them. Just as an annotation (or any other kind of
entity) can have multiple Locations (e.g., duplications,
different drafts, different genomes), so too can a single
Location correspond to several annotations.

We then use the BioEntity Location ruleform to connect
gene annotation BioEntities to their associated Locations
(Figure 7c). But it is not limited to that use; it is also used
to associate matched peptides from mass spectrometric
analyses to their genomic location. By implementing a
solution for one location-related purpose, we get a solu-
tion to another location-based problem essentially "for
free".

Example 4: Animation procedures for generalized location 
calculations
As mentioned before, animation procedures perform pro-
cedural tasks without being programmed using any case
or problem-specific knowledge (except as may be appro-
priate for that broad family of systems). One example is
mapping MS/MS peptide data to genome coordinates,
and then finding out what existing annotations say about
those coordinates. For this task, we need to be able to cal-
culate Relationships between Locations, such as "con-
tains", "before", or "after". Some MS/MS data may map a
peptide with high confidence to a particular nucleotide
sequence on chromosome 17; we will want to find all
existing genomic annotations that contain, are contained
by, overlap the 3' end of, or are located downstream of
this location (to name four possibilities). There can be
many other relationships that are interesting, and it is dif-
ficult to predict ahead of time all the types of relationships
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Location-related ruleformsFigure 7
Location-related ruleforms. The Location Context Attribute ruleform is used to specify what kinds of Attributes a Loca-
tion in the given context is allowed to have; these can be thought of as defining the internal structure of the Location. In Panel 
A, four rules specify that Locations in the 18th draft of the human genome must have four coordinates. "Base Sequence" here 
will refer to a chromosome, but can be used in other Location Contexts to stand for some sequence a Location may be 
defined on, such as a cloning vector or protein sequence. "Strand" will refer to either the forward or reverse DNA strand, 
while "Start" and "Stop" refer to the numerical coordinates where the Location will begin and end. This can be seen in Panel B, 
where the boxed region of the genome shown is represented as rules in the Location and Location Attribute ruleforms. First, 
a new Location must be defined, named "Genomic Region 100" (it may be anything, so long as it is unique among all Locations). 
This Location can now have values defined for each coordinate specified in the Location Context Attribute ruleform for an 
18th draft genomic region by using Location Attribute rules, as shown. Finally, Panel C illustrates the BioEntity Location rule-
form, which is used to define the kinds of Relationships that BioEntities can have with various Locations. In this sense, it is sim-
ilar to the BioEntity Network ruleform, with the difference that here we relate a BioEntity and Location, not two BioEntities. 
This ruleform is another example of a Resource-qualified ruleform; it is important to know who says a particular annotation is 
located at a specific genomic location, just as it is important to allow for the fact that different proteogenomic analysis methods 
may map the same peptide to several places on the genome.
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users may want to examine. But in the end, we are always
dealing with arbitrary calculations on two Locations that
share a Relationship, in order to find any relevant associ-
ated BioEntities.

Using the Location-related ruleforms as the basis, we
implemented a general animation procedure for perform-
ing coordinate-based Location calculations. For example,
we know that genomic region A contains genomic region
B if these regions are on the same strand of the same chro-
mosome, and the start and stop positions of B are between
those of A. This is defined explicitly as a set of rules in the
Location Relationship ruleform that define a containment
Relationship (Figure 8b). If the rules for containment
change (e.g., if coordinate systems for storing genomes are
modified), the only changes that need be made are to the
rules that define the Relationship. Other Relationships
can be similarly defined, such as "overlaps 3' end", "is
downstream of", and "is upstream of".

The animation procedure takes as input a Location, a
Location Context (indicating the kind of Locations to
search for), and a Relationship. The Location acts as an
anchor for the search, which will retrieve all Locations in
the given context such that the given Relationship holds.
The animation procedure uses this information to gener-
ate a search key for rules in the Location Relationship rule-
form (Figure 8b) that define what conditions must be true
to satisfy the user's query. Figure 8b shows the rules that
would be selected for a particular genomic Location over-
lap Relationship. The considerations of these rules, defin-
ing the conditions that exist between query Location and
retrieved Location, are used to dynamically generate an
SQL statement that retrieves the requested Locations.
These are then used to query another ruleform to find
BioEntities that are located at these Locations; this infor-
mation is then displayed to the user in a web browser
interface (Figure 9).

Nothing in either the structure of the Location Relation-
ship ruleform or the code of the animation procedure is
specific to genomic Locations. The end user could add
Location Relationship definitions for genomes, freezers,
or cells, and those would be immediately queryable
within the user interface to the Location procedures. By
storing this information as rules rather than in code, the
biologist end user has great flexibility in adjusting the sys-
tem to their needs. In our project, we have most exten-
sively used this capability to correlate results of our
proteogenomic mapping with existing annotation sets in
our database, to be reported in a separate publication.

Example 5: Animation procedure for deductive inference
Expressing everything as a rule in the system facilitates
automatic deductive inference procedures that can trans-

form implicit assumptions and relationships into explicit
rules. For example, "inverse" rules can automatically be
generated; if "Serine is-a Polar Amino Acid", then "Polar
Amino Acid includes Serine" can be inferred. Rules can
also be chained together. A rule may declare that "Gene X
encodes-product Protein A", and that "Protein A is-a
methyltransferase". If the Relationships "encodes-prod-
uct" and "is-a" are declared to be validly combinable to
deduce the resulting Relationship of "gene-type", chain-
ing these two rules together makes explicit that "Gene X
gene-type methyltransferase". Such a deductive process
serves first as a mechanism for consistency checking, and
secondly to uncover new connections in the data that may
have been implicit but not obvious.

We implemented a general deductive inference animation
procedure for each of our network ruleforms. Inverse rule
generation is driven by the Relationship of the network
rule, which by explicit definition knows its corresponding
inverse Relationship (Figure 4b); the procedure simply
inserts a new rule using this inverse Relationship and
swapping the subject and object of the original rule. It also
chains network rules together in logically valid ways to
deduce new relationships, governed by the Relationship
Chain ruleform. An overview is shown in Figure 10. The
animation procedure assembles pairs of network rules
based on whether the object of the first rule is equal to the
subject of the second rule (Figure 10, Step 1). For each
pair, it is then determined whether there is a Relationship
Chain rule that pertains to the combination of Relation-
ships represented (Figure 10, Step 2). If yes, a new rule can
be deduced by assembling pieces of the input rules and
the matching chain rule (Figure 10, Step 3).

The nature of the deduced rule is dependent on the rules
inspected in the course of the deduction; the animation
procedure simply carries out a series of mechanical data-
base queries and manipulations, purposefully ignorant of
the details of what it is computing. Hence, we can easily
tell the system that the "is-a" Relationship is transitive by
inserting an appropriate Relationship Chain rule whose
"Input 1", "Input 2", and "Result" columns are all set to
"is-a". Thus, we do not have to code a special case into the
deduction procedure to deal with transitive "is-a" rela-
tionships, and deduction using other Relationships with
more specific meaning (e.g., "part-of", "feature-type", and
"file-type") are easily modified by changing the meta-
rules.

One practical example of this is that if the system has a
rule linking a specific exon to a particular group of exons
(e.g., a particular gene), the system can automatically
deduce its putative membership in other applicable
groups (e.g., homologous genes in other species) using
the network structure and the Relationship Chain rules for
Page 16 of 22
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group membership. By reviewing such deductions, a user
may gain new insights into previously opaque relation-
ships. And if a deduced rule is thought contradictory or
incorrect vis-a-vis known facts, then this points to the
incorrectness of the premises (rules) from which it was
derived. Performing that kind of review can be a powerful
method for checking the consistency of data and assump-
tions in the system.

Discussion
A goal of Ultra-Structure development is to converge upon
a deep structure sufficiently general to represent a broad

domain of interest, such as systems biology research. The
expectation is that the deep structure will be arrived at iter-
atively, through testing implementations, experimenting,
and redesigning. That has been our experience in imple-
menting this system. For example, in an earlier iteration,
there was no explicit ruleform for representing locations;
we represented locations as BioEntities. Without a sepa-
rate concept of Location, the system mixed the concept of
coordinates of a genomic feature like an exon, with the
concept of the exon itself. As we began doing calculations
that were unique to location information, such as com-
puting "containment" relationships, it became clear that

Example ruleform for querying Locations by RelationshipFigure 8
Example ruleform for querying Locations by Relationship. Panel A: schematic of two locations from the 18th draft of 
the human genome declared in the system to have some overlap, with Genomic Location 1 overlapping the 5' end of Genomic 
Location 2. This relationship can be specified in terms of relationships between corresponding pairs of Attributes of those 
Locations. Panel B: We make the types of relationships we wish to query explicit, and can now allow us to perform queries 
based on Locations. For example, we define here a set of 5 rules that specify a relationship of "Location 1 overlaps the 5'-end 
of Location 2" that holds between Locations in the 18th draft of the human genome (specified by the "Context" and "Target 
Context" columns). Other ruleforms (not shown) contain meta-rules that ensure the appropriate rules are chosen for a given 
scenario. In this case, the rules for determining a 5' overlap depend on what nucleic acid strand (forward or reverse) a given 
genomic region lies; here we show the rules that apply for the forward strand only. These rules specify what relationships must 
hold between attributes of our query Location ("Location 1 Attribute" consideration) and those of any other Location ("Loca-
tion 2 Attribute" consideration) whose 5' region is overlapped by our query Location. For instance, the first rule states that 
both Locations must be on the same sequence (i.e., chromosome), while the second states that they must be on the same 
strand. The remaining rules constrain relationships between the start and stop positions of the Locations such that the desired 
relationship holds. Any kind of relationship that can be expressed in terms of relationships between Location Attributes can be 
represented in this way.
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Location-finding interfaceFigure 9
Location-finding interface. This interface for querying Locations in our Ultra-Structure system is generated based on the 
contents of the rulebase and user input. Here, the user has a region of the genome that has been mapped as the source of a 
peptide detected by MS/MS analysis and she wishes to see what other annotations contain this mapped region. Initially, only 
panel A is shown. The region the user has is the "query location"; in the top selection box, the user indicates that it comes 
from the 18th draft of the human genome. The user indicates she is interested in other annotations from the same draft with 
the drop-down box labeled "Target Context". Finally, based on the relationships the system knows that can exist between the 
given Query Context and Target Context (defined by rules), the user selects a Relationship; here, she chooses "overlap-con-
tained-by" to indicate that she wants all Locations that fully contain her query location. Upon selecting the Query Context, the 
interface in Panel B appears, requesting details pertinent to a Location of the chosen Context. Since the user has a genomic 
location, the system asks for details such as "Base Sequence" (e.g., a chromosome), and "Strand". When the user enters this 
information and presses the "Fetch BioEntities" button, the system reads the rules that govern the "overlap-contained-by" Rela-
tionship between Locations from the 18th draft of the human genome, finds all the Locations that satisfy that Relationship, and 
returns a list of all BioEntities that are associated with those Locations. In this scenario, six such BioEntities are returned, along 
with detailed Location information. The two rows indicated by the arrows represent annotated introns (suggesting heretofore 
unknown translational activity), while the other four represent annotations that themselves contain the introns (and, by exten-
sion, the user's query Location).
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our original deep structure (set of ruleforms) was too lim-
ited. By separating the concept of a thing like an exon into
the BioEntities ruleform, and its location into a new Loca-
tions ruleform, our system made a lot more sense. At the
same time, the development of the Location-related rule-
forms opened up a greater set of capabilities for other pur-
poses. This process illustrates Long's hypothesis that
notational systems used to represent information can
often present inherent limitations of which users are una-
ware, and that switching the underlying notation often
resolves problems and presents new possibilities [22].

Redesigning the ruleforms in Ultra-Structure has impact
throughout the system (e.g., on any existing middle struc-
ture), and is much like any database redesign, in that it
consumes time and effort. The key with Ultra-Structure is
then to converge on a foundational deep structure rela-
tively early in the system's evolution. If the result is suffi-

ciently general, further redesigns are minimized, even if
very different needs arise. An example is our evolution of
the system to represent gene annotations on DNA in two
distinct parts: the conceptual entities themselves (genes,
exons, introns, etc.) and networks thereof, and the dis-
crete locations of those entities (in arbitrary coordinates).
If genome coordinate systems later change, or gene con-
cepts change, this underlying structure is unlikely to need
major redesign. For example, a great deal of work is now
invested in characterizing methylation patterns on the his-
tones around which DNA is wound, since this appears to
have significant regulatory effects on which genes are
expressed or when. Hence, there may soon come a time at
which annotations will need to include histone methyla-
tion patterns. We cannot anticipate the precise way that
these will be represented, but it is likely that the system is
now general enough to readily accommodate this infor-
mation without modification to the rule forms.

Network ruleform propagationFigure 10
Network ruleform propagation. To generate new Network rules, existing rules are combined in logically consistent ways. 
In Step 1, two BioEntity Network rules are selected to potentially perform a deduction, based on the Object of Rule 1 and the 
Subject of Rule 2 being the same (BioEntity Network rules are shown, but the principle applies to any Network Ruleform). 
Deduction can only be carried out if there exists a Relationship Chain rule whose Input 1 and Input 2 fields match the Relation-
ship fields of the two Network Rules, as shown in Step 2. The Relationship Chain ruleform defines rules for composing Rela-
tionships together. Here, the selected Relationship Chain Rule expresses the situation that if "A is-a B", and "B has a feature-
type of C", then A's feature-type is also deduced to be C. If these conditions are met, then the new rule is generated at Step 3, 
consisting of the Subject of Rule 1, the Result of the chain rule, and the Object of Rule 2. Note that the Distance field of the 
resulting rule is the sum of the distances of the two input rules. Users can control how Relationships behave in combination 
with each other by specifying the appropriate rules in the Relationship Chain ruleform. For example, the "is-a" Relationship can 
be made transitive by creating a Relationship Chain rule where the Input 1, Input 2, and Result fields are all set to "is-a".
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As the deep structure has emerged and stabilized, subse-
quent modifications to the system have revolved increas-
ingly around the creation of new rules (middle structure).
When we were in the phase of implementing the rule-
forms, the Ultra-Structure approach seemed slow and dif-
ficult to implement, perhaps due to our lack of experience
with it. The high-level perspective required for Ultra-Struc-
ture design is quite different from the more standard
design methodologies we were accustomed to. Fortu-
nately, as an appropriate and general implementation of
ruleforms and animation procedures was developed, we
saw ever-increasing efficiency from our efforts, since each
implemented part of the deep structure can be utilized for
many purposes within the system, amortizing the pro-
gramming and design workload. An example is the time
spent designing and redesigning our representation of
Locations. Initially this took longer to get right in Ultra-
Structure than it would have using the standard approach
of designating specific columns in specific database tables
to represent features such as exon start and stop positions.
But now that it is in place, nearly any type of Location cal-
culation can be readily implemented. We could use the
system's deductive capability to determine anything from
which planet a particular sample is located on, to (per-
haps more usefully) which organelle a protein is
expressed inside of, or which freezer has a patient speci-
men. Little if any additional programming will be
required, excepting the case where we realize our repre-
sentation is not general enough. In that case, some rede-
sign work may be applied, but with the benefit of further
generalizing the system.

An example of this kind of generality is in our recording
of sequence tags. Sequence tags are short subsequences of
a larger peptide (an amino acid sequence of approxi-
mately 5–20 residues), and can be used in conjunction
with other information to help identify that larger pep-
tide. In early iterations of our system, we stored sequence
tags as textual attribute values on peptide BioEntities, e.g.,
"DNW" as part of the peptide "DNWDSVTSTF". After cre-
ation of the Location ruleforms, we realized that sequence
tags could be recast in the same way as any other genome
annotation, with a BioEntity representing the existence of
a specific tag, and a set of Location entries that describe
where the tag is located relative to its parent peptide
sequence. We defined new "Peptide Location" rules in the
middle structure of the Location Context table, with coor-
dinates for the peptide, start, and stop positions. These
rules echo those used to record genomic locations, but
without the Strand coordinate (since amino acid
sequences are single-stranded). Now, sequence tags are
handled like any other annotations on a sequence, except
that these are annotations relative to a peptide sequence,
whereas genes, exons, and the like are annotations relative
to a chromosomal sequence. Interpreting sequence tags as
just another type of sequence annotation is the kind of

insight that Ultra-Structure was designed to reveal, bring-
ing implementation efficiency and increased semantic
clarity.

Making explicit the information about what each thing is
in the BioEntities and BioEntities Network table, along
with where each thing is in the Locations-related tables,
improves the readability and understandability of the
data in the system for human users. This is important
because a key objective of Ultra-Structure design is to
allow subject experts to directly interact with the rules of a
system, without having to explain themselves to a pro-
grammer or rely on adequate documentation of existing
systems to discover what the rules are. Achieving this
makes systems more transparent and eliminates one of
the greatest sources of error in systems: the communica-
tion between subject experts and computer experts gener-
ically referred to as "requirements analysis". This allows
subject experts to define their own "terms of art" as
needed.

Ultra-Structure provides the ability to readily adapt to
evolving requirements and conceptual change in the real
world. For example, the classical conception of a gene is
that it comprises a contiguous region on one chromo-
somal strand, yielding a contiguous transcript which then
undergoes splicing to produce the mature RNA through
the excision of intron regions. This was the basis for our
representation of genes in our original database system.
Recently, new conceptual challenges to this classical
model have arisen, including discovery of significant
numbers of gene regions that produce distinct but over-
lapping transcripts, nested transcripts, and in some cases,
mature RNAs resulting from trans-gene splicing [30]. Our
original representation of a gene, with a single start and
stop site bounding the transcript, would not readily admit
oddities like trans-splicing. However, our Ultra-Structure
system represents genes as just instances of BioEntities,
each of which can be networked to some set of exons (also
BioEntities), themselves each of which can have arbitrary
location information associated and/or network relation-
ships to other annotations, such as identified MS/MS pep-
tides. This scheme accommodates nearly any possible
gene or transcript architecture. The Ultra-Structure system
stores trans-spliced transcripts in exactly the same way it
stores more canonical, ORF-based transcripts. In fitting
with Long's original claims, we have found that our Ultra-
Structure system accommodates changing concepts, pro-
cedures, and analyses quite well.

The high degree of modifiability of the system has resulted
in other benefits. One instance of this was the implemen-
tation of computing containment relationships on
genomes, such as finding which overlapping gene annota-
tions contain a given exon or peptide location. Initially
the rules were set up to analyze containment relationships
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only on the same strand of a chromosome. At one point
we wanted to examine whether there were also any anno-
tations of interest in the same region, but on the opposite
strand. We added this capability to the system with just
four new middle structure rules added to the database:
one to define a Relationship ("contains-(ignoring-
strand)") and three to define the conditions for the Rela-
tionship (i.e., that the start and stop positions of returned
Locations be between the start and stop of the initial
query Location, ignoring the strand). This was a simple
procedure that could be performed directly and quickly by
the end user with no programing or other system altera-
tion.

Performance of our initial prototype system is slower than
if traditional ER modeling techniques were used. This is a
well-known aspect of systems using decomposed schemas
(EAV/CR, RDF triple stores, etc.) in that "entity-centered"
queries ("Find all information about Sample 123") per-
form on par with ER-modeled systems, but "attribute-cen-
tered" queries ("Find all lab samples with purity > 98%
collected at 37°C") perform more slowly, due to repeated
self-joins. Our work has not focused on performance opti-
mizations yet, but this is the focus of ongoing work.
Potential solutions exist, ranging from index tuning, alter-
native query techniques, system configuration tuning, and
hardware improvements [31]. Additionally, performance
advances in other reasoning systems (particularly Seman-
tic Web-related systems) can potentially help here.

Systems biology is a rapidly changing field, and perhaps
one the greatest obstacles to progress is the challenge of
effective data management, integration, and analysis
across very large, heterogeneous, and complex data sets.
Our proteogenomic mapping project presents a micro-
cosm of these challenges with its need to integrate com-
plex genomic and proteomic data sets, all the while
keeping up with the rapidly changing technologies in
both fields. At present, our prototype Ultra-Structure sys-
tem is already yielding significant payoff for this task. But
perhaps more significantly, it now provides a platform
that can be readily adapted to other challenges. That is not
just theoretical; we are now beginning to apply the system
to other tasks such as managing and analyzing microbi-
ome data and managing and analyzing data from a next-
generation sequencing facility. The efforts invested in the
deep structure for proteogenomics have immediate appli-
cation in these other domains.

Conclusion
Our move to the Ultra-Structure system was not without
challenge. Thinking in the "Ultra-Structure way" was ini-
tially difficult, and progress was slow. At times we won-
dered whether a payoff would arrive, or whether we
should just go back to the original, more standard
approach. But once we reached a threshold of having a

stable deep structure, progress has accelerated. Now it is
becoming increasingly difficult for us to envision going
back to our pre-Ultra-Structure methods, because we see
payoffs not only in terms of implementation efficiency,
but also in helping us think about our data management
and analyses in new ways. This leads us to ponder the
question originally raised by Long: could it be that the
abstractions and notational systems we have been using
were limiting forward progress, without us knowing it?
Biological research is no longer content with just studying
bits and pieces of an organism or cell, but is instead
focused on examining the interactions and dynamics of
entire biological systems. Perhaps the needs of the field
have outgrown the traditional tools used to represent and
analyze biological data. We wonder: will new mental
tools like Ultra-Structure design clarify or elucidate
aspects of biology that may be concealed by more tradi-
tional abstractions? If "complexity" is another way of say-
ing "we don't understand", will new abstractions help
overcome barriers to understanding in biology? Ultra-
Structure may, at least partially, answer these questions
with a "yes". It remains to be seen whether it is the ulti-
mate solution, but so far it has moved us in those direc-
tions significantly from where we were before.
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