SQL

Short Summary (1 Lecture)
SQL is a standardized query language for relational databases.
Advantages of a standard for something like SQL, or any other database language. (From Date)

Reduced training costs - developers and users can use different applications with same language

Application portability between hardware and software environments

Application longevity

Communication between systems (also a point for distributed systems)

Customer choice. The language no longer becomes an issue in choice of product. (Although with many products providing their own “extensions” to SQL, this isn’t as helpful as it may sound.)

Disadvantages of standard.

Standard may stifle creativity.

SQL isn’t ideal or perfect. It’s status as a standard makes it harder to change.

On the other hand, SQL is evolving. There are also working groups on tricky issues such as temporal databases.

Notice the difference between describing how to get the desired result of a query, which is a procedural description (relational algebra); and what the result should look like, which is a declarative description (SQL, and the window-based tools you've been using for your labs).

Database languages are generally divided into two parts. Roughly, the data development language (DDL) allows the developer to create the database and the tables in it, modify their structure, and delete them. The data manipulation language (DML) allows you to extract information from the database, via queries.

<overhead from book to show what it looks like>

SQL DDL

Things to do in a DDL:

Create a schema.

Create a table, specify what attributes it has and what their values can be.

Modify a table.

Delete a table.

A schema groups together tables belonging to the same database.

create schema <schema-name> authorization <owner>

create table <table-name>

(attr1 type1

attr2 type2

. .

attrn typen

constraints);

<table name> is what you want to call the table.

You then list all the attributes that you want the table to have. For each attribute, you assign a data type. These may include numeric (of various kinds), character strings (of various kinds), date, time, timestamp, interval. You may also define a domain:

create domain <domain-name> as <data type>;

This is like declaring a constant, which may be used throughout the database description. If the domain definition changes, (e.g., zipcode -> zip+4), then you only need to change the definition once, rather than every place where a zipcode is used.

You may also state that an attribute must have a value, by adding "not null" to its definition. You would want to do this for all parts of the primary key.

Finally, you may declare a default value for an attribute.

Then you can specify several constraints on the table. <Overhead from book.>

1. primary key (<attribute(s))> indicates which attribute(s) make up the primary key.

2. unique <attribute> indicates that the attribute must have a unique value. This is thus an alternate key.

3. foreign key (<attribute(s)) references <table(attribute)> indicates that the attribute is a foreign key, and which table contains its referent. These constraints allow the DBMS to enforce entity, reference constraints. Notice that you must have created the PK table before you can create an FK. You can use the alter table command if you run into a circularity problem here. That lets you alter the definition of the table.

Referential integrity is enforced by specifying the referential triggered action, which is the action to be taken if a tuple to which a foreign key refers is deleted or its primary key value updated. You can specify a different action for on delete and on update. Possible actions are:

1. set null - set the foreign key attribute value to null

2. cascade - on delete, delete all tuples that refer to that tuple. on update, update all foreign key values.

3. set default - set the foreign key value to the specified default value.

Create Index. Of course, you must have created the table before you create the index.

Create index <name> on <table>(<attr>);

Create index book_x on author(title);

Drop schema <name> cascade - removes the entire database, table definitions and all.

Drop schema <name> restrict - removes the schema only if it is empty - everything else has already been removed.

Drop table <name> cascade - removes a table

Drop table <name> restrict - removes table only if not referenced somewhere else in the schema definition, e.g. as a foreign key.

Alter table lets you add or drop attributes, change a column definition, add or drop constraints. If you want to drop a column, you can specify cascade or restrict with the usual meaning. Note: This isn’t fully implemented in all SQLs.

Security

SQL provides two methods for making the database more secure.

Views

A view is a virtual table that is derived from other tables. This is handy when there are users who frequently need to see or query specific "answer tables". For instance, always need to do a join before doing any "real" work. You can think of this as having a permanently designed answer table, that can then be further operated on. Views can be created, dropped, and updated. The creates and updates look rather like queries themselves, (which they are).

Create view lets you define a view, for convenience/security. Views are drawn from base tables, and frequently cannot be used for updates.

Create view <name>

As select <attributes>

From <table(s)>

Where <conditions>;

Create view dept-info

As select lname, ssn, dname, dnumber

From employee, department

where ssn = mgrssn;

The second method is the ability to grant privileges to users or groups of users. Privileges include the ability to select update, delete, or insert tables or views. In addition, the DBA can also grant the privilege to grant privileges. For example, you may give the operators who take orders the privilege to select tuples from a table describing products, and to insert a new tuple into the table that records orders.

Grant lets you give specific privileges to users, based on the basic SQL commands.

Grant <action> on <table or view>

To<user name or group>;

Grant select on employee

to Fred;

Grant select, insert, update, delete on Employee

To Martha

With grant option;

Example SQL DDL.

Given this simple ER diagram, write the DDL statements for the tables and the indexes. Watch the dependencies! <overhead>

SQL DML

The DML is where you insert, delete, or update a record, or when you query the database.

Select: This is where you specify a query. Essentially, in a query, you want to describe what the answer looks like. You are carving out a subset of the rows and columns of the table or tables. Note that although the command starts with "select", it has no relation to the "select" of relational algebra.

The basic query structure:

select <attribute list>

from <table list>

where <condition>

example:

select fname, lname, bdate

from employee

where bdate < 01-jan-60

The select line specifies which attributes you want to see - this is choosing a subset of the columns.

The from line specifies which table(s) you need to access.

The where line specifies any conditions you want to put on which tuples you see. This lets you choose which lines you want to see. It also lets you combine two or more tables, by describing the conditions under which they can combine. E.g., the records must have the same primary key value.

If you need to access two or more tables, and either they have the same attr. names, or you want to be quite clear on which attributes you are referring to, you can use qualified names, with the table name prefixed to the attr name. Access and Oracle are fairly strict about this.

List ESSN of people working on project 30.

Select ESSN

From works-on

Where pno = 30

List names and SS# of people working on project 30.

Select name, ssn

from employees, works-on

where ssn = ESSN

 and pno = 30.

"SSN = ESSN" is the join condition.

Explicitly joined tables. Rather than implicitly joining tables by specifying a join condition in the where clause, you can explicitly do so in the from clause:

From (<T1> Join <T2> on <join condition>)

Example: List the names and SS# of people working on project 30.

select name, SSN

from (employees join works-on on SS = ESSN)

where pno = 30

For the natural join, you don't need to specify the join condition; the tables will be equi-joined on all attributes with the same name. The default is an inner join, where tuples will be included only if they satisfy the join condition. But you can specify a left or right outer join.

My preference is for you to list join conditions, and list one condition per line in WHERE clause. For example

SELECT E. name, E.ssn

FROM employees E, works-on W

WHERE E.ssn = W.ESSN AND

 W.pno = 30 AND

 E.age > 50;
Other neat things you can do with SQL queries

1. If the same attribute name is used in more than one table, we can provide an unambiguous name for each attribute by qualifying the attribute name with the table name: <table.attribute>. See for instance Employee as “E” in above query.
2. Sometimes you need to refer to the same table twice - you sort of want to make a "copy" of it. Or, you may just get tired of writing out the whole name and want a shorter name for it. In SQL, you can give a table an alias in the from clause:

from employee E, employee M
and then use "E" to refer to the employee table from employee perspective, and M to refer to another instance of the employee table from the managers perspective.
3. Unspecified "where". If you don't have a where clause, there are no conditions, therefore you will see all the tuples.

4. * in select. If you want to see all the attributes in the table(s) you list, use * in the select clause.

5. If you do not want to see duplicate tuples in tables (after joins, and projects that don't include the key), use distinct in the select clause.

select distinct bdate

will list only the unique birthdates, not any duplicate ones (set). To leave duplicates in (multiset), use default SELECT or SELECT ALL. This is another quarrel some people have with SQL, because the resulting table (with default SELECT) isn't a relation.

6. You can combine queries using union, intersect, and except (difference), the set operators. Note that the tables must be union compatible. (With some DBMS-specific exceptions.)

7. In SQL, you can "nest" queries, and directly apply one query to the results of another one. This is useful when the query requires that you first get some existing values, and then compare them to something else. The nested query is done first. You can think of this as adding another condition to your query, so it is attached to the where clause.

who is the oldest employee working on project 10.

first, make the inner query, to get the employees on project 10.

select essn

from works-on

where works-on.pno = 10

that creates a table that you can then find the min bdate on.

select min(bdate)

from employee

where ssn in (select essn

 from works-on

 where works-on.pno = 10)

A correlated query is a nested query where the where clause of the nested query references some attribute of the relation declared in the from clause of the outer query. The book has examples of these. You can think of a nested query as a nested loop, where the inner part is evaluated once for each tuple of the outer query.

8. "Exists" lets you collect a list of tuples where the condition that is true is the existence of some other tuple. Similarly, "not exists" collects the tuples where the condition isn't true.

Which project numbers have an employee working on them who is paid 25000 or less?

select pno

from works-on

where exists (select *

 from employee

 where works-on.essn = employee.ssn

 and

 employee.salary <= 25000)

9. Aggregate functions are treated as attributes, and are applied to the appropriate attributes in the select clause.

10. To apply aggregates to subgroups, use the "group by" clause. For example, this is how you would get subtotals.

What's the average number of hours worked by employees on each project

select pno, avg(hours)

from works-on

group by pno

Write the SQL query for the relational algebra query <c3>:

list the addresses of people working on product x.

select address

from employee

where ssn in (select essn

 from works-on, project

 where pname = productx

 and

 pno = pnumber);

or

select address

from employee join (works-on join project on pno = pnumber) on ssn = essn

where pname = “product X”;

or

select address

from employee, works-on, project

where ssn = essn and

 pno = pnumber and

 pname = “product X”;

PAGE
7

